These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 37523020)

  • 21. RNAi-mediated resistance to whitefly (Bemisia tabaci) in genetically engineered lettuce (Lactuca sativa).
    Ibrahim AB; Monteiro TR; Cabral GB; Aragão FJL
    Transgenic Res; 2017 Oct; 26(5):613-624. PubMed ID: 28712067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissecting protein domain variability in the core RNA interference machinery of five insect orders.
    Arraes FBM; Martins-de-Sa D; Noriega Vasquez DD; Melo BP; Faheem M; de Macedo LLP; Morgante CV; Barbosa JARG; Togawa RC; Moreira VJV; Danchin EGJ; Grossi-de-Sa MF
    RNA Biol; 2021 Nov; 18(11):1653-1681. PubMed ID: 33302789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sustainability of insect resistance management strategies for transgenic Bt corn.
    Glaser JA; Matten SR
    Biotechnol Adv; 2003 Dec; 22(1-2):45-69. PubMed ID: 14623043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA interference: a new strategy in the evolutionary arms race between human control strategies and insect pests.
    Machado V; Rodríguez-García MJ; Sánchez-García FJ; Galan J
    Folia Biol (Krakow); 2014; 62(4):335-43. PubMed ID: 25916161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Strategies for exogenous RNA delivery in RNAi-mediated pest management].
    Gong L; Ying S; Zhang Y; Wang J; Sun G
    Sheng Wu Gong Cheng Xue Bao; 2023 Feb; 39(2):459-471. PubMed ID: 36847083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance.
    Ni M; Ma W; Wang X; Gao M; Dai Y; Wei X; Zhang L; Peng Y; Chen S; Ding L; Tian Y; Li J; Wang H; Wang X; Xu G; Guo W; Yang Y; Wu Y; Heuberger S; Tabashnik BE; Zhang T; Zhu Z
    Plant Biotechnol J; 2017 Sep; 15(9):1204-1213. PubMed ID: 28199783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plastid-mediated RNA interference: A potential strategy for efficient pest control.
    Li S; Kim DS; Zhang J
    Plant Cell Environ; 2023 Sep; 46(9):2595-2605. PubMed ID: 37332196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Next-Generation Transgenic Cotton: Pyramiding RNAi with Bt Counters Insect Resistance.
    Ma W; Zhang T
    Methods Mol Biol; 2019; 1902():245-256. PubMed ID: 30543077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effectiveness of the high dose/refuge strategy for managing pest resistance to Bacillus thuringiensis (Bt) plants expressing one or two toxins.
    Gryspeirt A; Grégoire JC
    Toxins (Basel); 2012 Oct; 4(10):810-35. PubMed ID: 23162699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing.
    Koch A; Kogel KH
    Plant Biotechnol J; 2014 Sep; 12(7):821-31. PubMed ID: 25040343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA Interference: Promising Approach to Combat Plant Viruses.
    Akbar S; Wei Y; Zhang MQ
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of biotic stresses on the Brassicaceae family and opportunities for crop improvement by exploiting genotyping traits.
    Das Laha S; Kundu A; Podder S
    Planta; 2024 Mar; 259(5):97. PubMed ID: 38520529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PsOr1, a potential target for RNA interference-based pest management.
    Zhao YY; Liu F; Yang G; You MS
    Insect Mol Biol; 2011 Feb; 20(1):97-104. PubMed ID: 20854479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNAi silencing CHS1 gene shortens the mortality time of Plutella xylostella feeding Bt-transgenic Brassica napus.
    Deng P; Peng Y; Sheng Z; Li W; Liu Y
    Pest Manag Sci; 2024 Jun; 80(6):2610-2618. PubMed ID: 38252693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Are small RNAs a big help to plants?
    Mao Y; Xue X; Chen X
    Sci China C Life Sci; 2009 Mar; 52(3):212-23. PubMed ID: 19294346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methods for Delivery of dsRNAs for Agricultural Pest Control: The Case of Lepidopteran Pests.
    Garbatti Factor B; de Moura Manoel Bento F; Figueira A
    Methods Mol Biol; 2022; 2360():317-345. PubMed ID: 34495524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient control of western flower thrips by plastid-mediated RNA interference.
    Wu M; Dong Y; Zhang Q; Li S; Chang L; Loiacono FV; Ruf S; Zhang J; Bock R
    Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2120081119. PubMed ID: 35380896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering host resistance against parasitic weeds with RNA interference.
    Yoder JI; Gunathilake P; Wu B; Tomilova N; Tomilov AA
    Pest Manag Sci; 2009 May; 65(5):460-6. PubMed ID: 19235710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging strategies for RNA interference (RNAi) applications in insects.
    Nandety RS; Kuo YW; Nouri S; Falk BW
    Bioengineered; 2015; 6(1):8-19. PubMed ID: 25424593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control.
    Zhang H; Li HC; Miao XX
    Insect Sci; 2013 Feb; 20(1):15-30. PubMed ID: 23955822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.