BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37523569)

  • 21. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IbpA/B small heat-shock protein of marine bacterium Vibrio harveyi binds to proteins aggregated in a cell during heat shock.
    Klein G; Laskowska E; Taylor A; Lipińska B
    Mar Biotechnol (NY); 2001 Jul; 3(4):346-54. PubMed ID: 14961350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial molecular chaperones.
    Lund PA
    Adv Microb Physiol; 2001; 44():93-140. PubMed ID: 11407116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DnaK chaperone-mediated control of activity of a sigma(32) homolog (RpoH) plays a major role in the heat shock response of Agrobacterium tumefaciens.
    Nakahigashi K; Yanagi H; Yura T
    J Bacteriol; 2001 Sep; 183(18):5302-10. PubMed ID: 11514513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro holdase activity of E. coli small heat-shock proteins IbpA, IbpB and IbpAB: a biophysical study with some unconventional techniques.
    Roy SS; Patra M; Nandy SK; Banik M; Dasgupta R; Basu T
    Protein Pept Lett; 2014 Jun; 21(6):564-71. PubMed ID: 24364870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease.
    Obrist M; Langklotz S; Milek S; Führer F; Narberhaus F
    FEMS Microbiol Lett; 2009 Jan; 290(2):199-208. PubMed ID: 19025566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli.
    Allen SP; Polazzi JO; Gierse JK; Easton AM
    J Bacteriol; 1992 Nov; 174(21):6938-47. PubMed ID: 1356969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution towards simplicity in bacterial small heat shock protein system.
    Karaś P; Kochanowicz K; Pitek M; Domanski P; Obuchowski I; Tomiczek B; Liberek K
    Elife; 2023 Dec; 12():. PubMed ID: 38063373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo substrate diversity and preference of small heat shock protein IbpB as revealed by using a genetically incorporated photo-cross-linker.
    Fu X; Shi X; Yan L; Zhang H; Chang Z
    J Biol Chem; 2013 Nov; 288(44):31646-54. PubMed ID: 24045939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Functionality of IbpA from
    Chernova LS; Vishnyakov IE; Börner J; Bogachev MI; Thormann KM; Kayumov AR
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Escherichia coli small heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and oxidants.
    Kitagawa M; Miyakawa M; Matsumura Y; Tsuchido T
    Eur J Biochem; 2002 Jun; 269(12):2907-17. PubMed ID: 12071954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.
    Zhang H; Yang J; Wu S; Gong W; Chen C; Perrett S
    J Biol Chem; 2016 Mar; 291(13):6967-81. PubMed ID: 26823468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The essential role of the flexible termini in the temperature-responsiveness of the oligomeric state and chaperone-like activity for the polydisperse small heat shock protein IbpB from Escherichia coli.
    Jiao W; Qian M; Li P; Zhao L; Chang Z
    J Mol Biol; 2005 Apr; 347(4):871-84. PubMed ID: 15769476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between sigma 70 and sigma 32 factors assembled with RNA polymerase.
    Blaszczak A; Zylicz M; Georgopoulos C; Liberek K
    EMBO J; 1995 Oct; 14(20):5085-93. PubMed ID: 7588636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli.
    Nagai H; Yuzawa H; Kanemori M; Yura T
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dramatically increased chaperone activity of small heat-shock protein IbpB is retained for an extended period of time after the stress condition is removed.
    Jiao W; Hong W; Li P; Sun S; Ma J; Qian M; Hu M; Chang Z
    Biochem J; 2008 Feb; 410(1):63-70. PubMed ID: 17995456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Short ROSE-like RNA thermometers control IbpA synthesis in Pseudomonas species.
    Krajewski SS; Nagel M; Narberhaus F
    PLoS One; 2013; 8(5):e65168. PubMed ID: 23741480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation.
    Nakahigashi K; Yanagi H; Yura T
    Nucleic Acids Res; 1995 Nov; 23(21):4383-90. PubMed ID: 7501460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of Escherichia coli heat shock proteins IbpA and IbpB in protection of alcohol dehydrogenase AdhE against heat inactivation in the presence of oxygen.
    Matuszewska E; Kwiatkowska J; Ratajczak E; Kuczyńska-Wiśnik D; Laskowska E
    Acta Biochim Pol; 2009; 56(1):55-61. PubMed ID: 19238259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.