BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37524053)

  • 21. Infusion of Variable Chemical Structure to Tune Stacking among Metal-Organic Layers in 2D Nano MOF.
    Manna B; Yokoi H; Yamashita A; Sato S; Ohyama J; Kunitake M; Ida S
    Chemistry; 2022 Oct; 28(55):e202201665. PubMed ID: 35934829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 2D Conductive Metal-Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage.
    Liu J; Song X; Zhang T; Liu S; Wen H; Chen L
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5612-5624. PubMed ID: 32452126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrically Conductive Metal-Organic Frameworks.
    Xie LS; Skorupskii G; Dincă M
    Chem Rev; 2020 Aug; 120(16):8536-8580. PubMed ID: 32275412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrically Conductive Porous Metal-Organic Frameworks.
    Sun L; Campbell MG; Dincă M
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3566-79. PubMed ID: 26749063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isoreticular Linker Substitution in Conductive Metal-Organic Frameworks with Through-Space Transport Pathways.
    Xie LS; Park SS; Chmielewski MJ; Liu H; Kharod RA; Yang L; Campbell MG; Dincă M
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19623-19626. PubMed ID: 32343881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Missing-Linker 2D Conductive Metal Organic Frameworks for Rapid Gas Detection.
    Liu C; Gu Y; Liu C; Liu S; Li X; Ma J; Ding M
    ACS Sens; 2021 Feb; 6(2):429-438. PubMed ID: 33428382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning Electrical and Mechanical Properties of Metal-Organic Frameworks by Metal Substitution.
    Yan Y; Wang C; Cai Z; Wang X; Xuan F
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42845-42853. PubMed ID: 37644617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct Evidence of Photoinduced Charge Transport Mechanism in 2D Conductive Metal Organic Frameworks.
    Nyakuchena J; Ostresh S; Streater D; Pattengale B; Neu J; Fiankor C; Hu W; Kinigstein ED; Zhang J; Zhang X; Schmuttenmaer CA; Huang J
    J Am Chem Soc; 2020 Dec; 142(50):21050-21058. PubMed ID: 33226217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two-Dimensional Metal-Organic Frameworks.
    Wang D; Ostresh S; Streater D; He P; Nyakuchena J; Ma Q; Zhang X; Neu J; Brudvig GW; Huang J
    Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202309505. PubMed ID: 37872121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies.
    Jayaramulu K; Mukherjee S; Morales DM; Dubal DP; Nanjundan AK; Schneemann A; Masa J; Kment S; Schuhmann W; Otyepka M; Zbořil R; Fischer RA
    Chem Rev; 2022 Dec; 122(24):17241-17338. PubMed ID: 36318747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Piperazine-Linked Covalent Organic Frameworks with High Electrical Conductivity.
    Yue Y; Li H; Chen H; Huang N
    J Am Chem Soc; 2022 Feb; 144(7):2873-2878. PubMed ID: 35129344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Transition Metals on Metal-Octaaminophthalocyanine-Based 2D Metal-Organic Frameworks.
    Chen G; Li Z; Huang Z; Lu H; Long G; Lezama Pacheco JS; Tok JB; Gao TZ; Lei Y; Zhou J; Bao Z
    ACS Nano; 2023 May; 17(10):9611-9621. PubMed ID: 37166018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the Electrical Conductivity of a Flexible Fabric-Based Cu-HHTP Film through a Novel Redox Interaction between the Guest-Host System.
    Sun C; Wang W; Mu X; Zhang Y; Wang Y; Ma C; Jia Z; Zhu J; Wang C
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):54266-54275. PubMed ID: 36399651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ag Nanoparticles-Induced Metallic Conductivity in Thin Films of 2D Metal-Organic Framework Cu
    Saha S; Ananthram KS; Hassan N; Ugale A; Tarafder K; Ballav N
    Nano Lett; 2023 Oct; 23(20):9326-9332. PubMed ID: 37843499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational Prediction of Metal Organic Frameworks Suitable for Molecular Infiltration as a Route to Development of Conductive Materials.
    Nie X; Kulkarni A; Sholl DS
    J Phys Chem Lett; 2015 May; 6(9):1586-91. PubMed ID: 26263318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Through-Space Intervalence Charge Transfer as a Mechanism for Charge Delocalization in Metal-Organic Frameworks.
    Hua C; Doheny PW; Ding B; Chan B; Yu M; Kepert CJ; D'Alessandro DM
    J Am Chem Soc; 2018 May; 140(21):6622-6630. PubMed ID: 29727176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metallic Conductivity in a Two-Dimensional Cobalt Dithiolene Metal-Organic Framework.
    Clough AJ; Skelton JM; Downes CA; de la Rosa AA; Yoo JW; Walsh A; Melot BC; Marinescu SC
    J Am Chem Soc; 2017 Aug; 139(31):10863-10867. PubMed ID: 28704606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exotic Topological Bands and Quantum States in Metal-Organic and Covalent-Organic Frameworks.
    Jiang W; Ni X; Liu F
    Acc Chem Res; 2021 Jan; 54(2):416-426. PubMed ID: 33400497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Guest-Induced Emergent Properties in Metal-Organic Frameworks.
    Allendorf MD; Foster ME; Léonard F; Stavila V; Feng PL; Doty FP; Leong K; Ma EY; Johnston SR; Talin AA
    J Phys Chem Lett; 2015 Apr; 6(7):1182-95. PubMed ID: 26262970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction.
    Xing G; Zheng W; Gao L; Zhang T; Wu X; Fu S; Song X; Zhao Z; Osella S; Martínez-Abadía M; Wang HI; Cai J; Mateo-Alonso A; Chen L
    J Am Chem Soc; 2022 Mar; 144(11):5042-5050. PubMed ID: 35189061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.