These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37525436)

  • 1. Accounting for nonmonotone missing data using inverse probability weighting.
    Ross RK; Cole SR; Edwards JK; Westreich D; Daniels JL; Stringer JSA
    Stat Med; 2023 Oct; 42(23):4282-4298. PubMed ID: 37525436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On Inverse Probability Weighting for Nonmonotone Missing at Random Data.
    Sun B; Tchetgen Tchetgen EJ
    J Am Stat Assoc; 2018; 113(521):369-379. PubMed ID: 30034062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between inverse-probability weighting and multiple imputation in Cox model with missing failure subtype.
    Guo F; Langworthy B; Ogino S; Wang M
    Stat Methods Med Res; 2024 Feb; 33(2):344-356. PubMed ID: 38262434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propensity score analysis with partially observed covariates: How should multiple imputation be used?
    Leyrat C; Seaman SR; White IR; Douglas I; Smeeth L; Kim J; Resche-Rigon M; Carpenter JR; Williamson EJ
    Stat Methods Med Res; 2019 Jan; 28(1):3-19. PubMed ID: 28573919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical inference for missing data mechanisms.
    Zhao Y
    Stat Med; 2020 Dec; 39(28):4325-4333. PubMed ID: 32815184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Missing Data in Marginal Structural Models: A Plasmode Simulation Study Comparing Multiple Imputation and Inverse Probability Weighting.
    Liu SH; Chrysanthopoulou SA; Chang Q; Hunnicutt JN; Lapane KL
    Med Care; 2019 Mar; 57(3):237-243. PubMed ID: 30664611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the use of multiple imputation to address data missing by design as well as unintended missing data in case-cohort studies with a binary endpoint.
    Middleton M; Nguyen C; Carlin JB; Moreno-Betancur M; Lee KJ
    BMC Med Res Methodol; 2023 Dec; 23(1):287. PubMed ID: 38062377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of multiple imputation approaches for handling missing covariate information in a case-cohort study with a binary outcome.
    Middleton M; Nguyen C; Moreno-Betancur M; Carlin JB; Lee KJ
    BMC Med Res Methodol; 2022 Apr; 22(1):87. PubMed ID: 35369860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Missing confounding data in marginal structural models: a comparison of inverse probability weighting and multiple imputation.
    Moodie EE; Delaney JA; Lefebvre G; Platt RW
    Int J Biostat; 2008; 4(1):Article 13. PubMed ID: 22462119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of statistical approaches for analyzing incomplete longitudinal patient-reported outcome data in randomized controlled trials.
    Rombach I; Jenkinson C; Gray AM; Murray DW; Rivero-Arias O
    Patient Relat Outcome Meas; 2018; 9():197-209. PubMed ID: 29950913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of predictive model performance of an existing model in the presence of missing data.
    Li P; Taylor JMG; Spratt DE; Karnes RJ; Schipper MJ
    Stat Med; 2021 Jul; 40(15):3477-3498. PubMed ID: 33843085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating population treatment effects from a survey subsample.
    Rudolph KE; Díaz I; Rosenblum M; Stuart EA
    Am J Epidemiol; 2014 Oct; 180(7):737-48. PubMed ID: 25190679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dealing with indeterminate outcomes in antimalarial drug efficacy trials: a comparison between complete case analysis, multiple imputation and inverse probability weighting.
    Dahal P; Stepniewska K; Guerin PJ; D'Alessandro U; Price RN; Simpson JA
    BMC Med Res Methodol; 2019 Nov; 19(1):215. PubMed ID: 31775647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining multiple imputation and inverse-probability weighting.
    Seaman SR; White IR; Copas AJ; Li L
    Biometrics; 2012 Mar; 68(1):129-37. PubMed ID: 22050039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responsiveness-informed multiple imputation and inverse probability-weighting in cohort studies with missing data that are non-monotone or not missing at random.
    Doidge JC
    Stat Methods Med Res; 2018 Feb; 27(2):352-363. PubMed ID: 26984909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HANDLING MISSING DATA BY DELETING COMPLETELY OBSERVED RECORDS.
    Paik MC; Wang C
    J Stat Plan Inference; 2009 Jul; 139(7):2341-2350. PubMed ID: 20160863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation.
    Rezvan PH; White IR; Lee KJ; Carlin JB; Simpson JA
    BMC Med Res Methodol; 2015 Oct; 15():83. PubMed ID: 26464305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correcting for dependent censoring in routine outcome monitoring data by applying the inverse probability censoring weighted estimator.
    Willems S; Schat A; van Noorden MS; Fiocco M
    Stat Methods Med Res; 2018 Feb; 27(2):323-335. PubMed ID: 26988930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of inverse probability weighting for dealing with missing data.
    Seaman SR; White IR
    Stat Methods Med Res; 2013 Jun; 22(3):278-95. PubMed ID: 21220355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple imputation methods for handling missing values in longitudinal studies with sampling weights: Comparison of methods implemented in Stata.
    De Silva AP; De Livera AM; Lee KJ; Moreno-Betancur M; Simpson JA
    Biom J; 2021 Feb; 63(2):354-371. PubMed ID: 33103307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.