These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 37525436)
21. Properties and pitfalls of weighting as an alternative to multilevel multiple imputation in cluster randomized trials with missing binary outcomes under covariate-dependent missingness. Turner EL; Yao L; Li F; Prague M Stat Methods Med Res; 2020 May; 29(5):1338-1353. PubMed ID: 31293199 [TBL] [Abstract][Full Text] [Related]
22. Accounting for missing data in statistical analyses: multiple imputation is not always the answer. Hughes RA; Heron J; Sterne JAC; Tilling K Int J Epidemiol; 2019 Aug; 48(4):1294-1304. PubMed ID: 30879056 [TBL] [Abstract][Full Text] [Related]
23. Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study. Tran L; Yiannoutsos C; Wools-Kaloustian K; Siika A; van der Laan M; Petersen M Int J Biostat; 2019 Feb; 15(2):. PubMed ID: 30811344 [TBL] [Abstract][Full Text] [Related]
24. Inverse Probability of Treatment Weighting and Confounder Missingness in Electronic Health Record-based Analyses: A Comparison of Approaches Using Plasmode Simulation. Vader DT; Mamtani R; Li Y; Griffith SD; Calip GS; Hubbard RA Epidemiology; 2023 Jul; 34(4):520-530. PubMed ID: 37155612 [TBL] [Abstract][Full Text] [Related]
25. On variance estimation of target population created by inverse probability weighting. Chen J; Chen R; Feng Y; Tan M; Chen P; Wu Y J Biopharm Stat; 2024 Aug; 34(5):661-679. PubMed ID: 37621147 [TBL] [Abstract][Full Text] [Related]
26. Model misspecification and bias for inverse probability weighting estimators of average causal effects. Waernbaum I; Pazzagli L Biom J; 2023 Feb; 65(2):e2100118. PubMed ID: 36045099 [TBL] [Abstract][Full Text] [Related]
27. Inverse-Probability-Weighted Estimation for Monotone and Nonmonotone Missing Data. Sun B; Perkins NJ; Cole SR; Harel O; Mitchell EM; Schisterman EF; Tchetgen Tchetgen EJ Am J Epidemiol; 2018 Mar; 187(3):585-591. PubMed ID: 29165557 [TBL] [Abstract][Full Text] [Related]
28. Multiple imputation methods for the missing covariates in generalized estimating equation. Xie F; Paik MC Biometrics; 1997 Dec; 53(4):1538-46. PubMed ID: 9423268 [TBL] [Abstract][Full Text] [Related]
29. Approaches to addressing missing values, measurement error, and confounding in epidemiologic studies. van Smeden M; Penning de Vries BBL; Nab L; Groenwold RHH J Clin Epidemiol; 2021 Mar; 131():89-100. PubMed ID: 33176189 [TBL] [Abstract][Full Text] [Related]
30. Nonparametric inverse-probability-weighted estimators based on the highly adaptive lasso. Ertefaie A; Hejazi NS; van der Laan MJ Biometrics; 2023 Jun; 79(2):1029-1041. PubMed ID: 35839293 [TBL] [Abstract][Full Text] [Related]
31. Statistical methods for incomplete data: Some results on model misspecification. McIsaac M; Cook RJ Stat Methods Med Res; 2017 Feb; 26(1):248-267. PubMed ID: 25063681 [TBL] [Abstract][Full Text] [Related]
32. Improving causal inference with a doubly robust estimator that combines propensity score stratification and weighting. Linden A J Eval Clin Pract; 2017 Aug; 23(4):697-702. PubMed ID: 28116816 [TBL] [Abstract][Full Text] [Related]
33. On Variance of the Treatment Effect in the Treated When Estimated by Inverse Probability Weighting. Reifeis SA; Hudgens MG Am J Epidemiol; 2022 May; 191(6):1092-1097. PubMed ID: 35106534 [TBL] [Abstract][Full Text] [Related]
34. Unified estimation for Cox regression model with nonmonotone missing at random covariates. Thiessen DL; Zhao Y; Tu D Stat Med; 2022 Oct; 41(24):4781-4790. PubMed ID: 35788969 [TBL] [Abstract][Full Text] [Related]
35. Addressing missing data in the estimation of time-varying treatments in comparative effectiveness research. Segura-Buisan J; Leyrat C; Gomes M Stat Med; 2023 Nov; 42(27):5025-5038. PubMed ID: 37726937 [TBL] [Abstract][Full Text] [Related]
36. Multiple imputation using auxiliary imputation variables that only predict missingness can increase bias due to data missing not at random. Curnow E; Cornish RP; Heron JE; Carpenter JR; Tilling K BMC Med Res Methodol; 2024 Oct; 24(1):231. PubMed ID: 39375597 [TBL] [Abstract][Full Text] [Related]
37. Combining multiple imputation with raking of weights: An efficient and robust approach in the setting of nearly true models. Han K; Shaw PA; Lumley T Stat Med; 2021 Dec; 40(30):6777-6791. PubMed ID: 34585424 [TBL] [Abstract][Full Text] [Related]
38. Impact of outcome model misspecification on regression and doubly-robust inverse probability weighting to estimate causal effect. Lefebvre G; Gustafson P Int J Biostat; 2010; 6(2):Article 15. PubMed ID: 21969999 [TBL] [Abstract][Full Text] [Related]