These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 37525436)
41. Multiple imputation strategies for missing event times in a multi-state model analysis. Curnow E; Hughes RA; Birnie K; Tilling K; Crowther MJ Stat Med; 2024 Mar; 43(6):1238-1255. PubMed ID: 38258282 [TBL] [Abstract][Full Text] [Related]
42. A two-step semiparametric method to accommodate sampling weights in multiple imputation. Zhou H; Elliott MR; Raghunathan TE Biometrics; 2016 Mar; 72(1):242-52. PubMed ID: 26393409 [TBL] [Abstract][Full Text] [Related]
43. A comparison of multiple imputation and fully augmented weighted estimators for Cox regression with missing covariates. Qi L; Wang YF; He Y Stat Med; 2010 Nov; 29(25):2592-604. PubMed ID: 20806403 [TBL] [Abstract][Full Text] [Related]
44. Leveraging auxiliary data to improve precision in inverse probability-weighted analyses. Zalla LC; Yang JY; Edwards JK; Cole SR Ann Epidemiol; 2022 Oct; 74():75-83. PubMed ID: 35940394 [TBL] [Abstract][Full Text] [Related]
45. The impact of methods to handle missing data on the estimated prevalence of dementia and mild cognitive impairment in a cross-sectional study including non-responders. Tan JP; Li N; Lan XY; Zhang SM; Cui B; Liu LX; He X; Zeng L; Tau LY; Zhang H; Wang XX; Wang LN; Zhao YM Arch Gerontol Geriatr; 2017 Nov; 73():43-49. PubMed ID: 28755569 [TBL] [Abstract][Full Text] [Related]
46. Common Methods for Handling Missing Data in Marginal Structural Models: What Works and Why. Leyrat C; Carpenter JR; Bailly S; Williamson EJ Am J Epidemiol; 2021 Apr; 190(4):663-672. PubMed ID: 33057574 [TBL] [Abstract][Full Text] [Related]
47. Balancing efficacy and computational burden: weighted mean, multiple imputation, and inverse probability weighting methods for item non-response in reliable scales. Guide A; Garbett S; Feng X; Mapes BM; Cook J; Sulieman L; Cronin RM; Chen Q J Am Med Inform Assoc; 2024 Dec; 31(12):2869-2879. PubMed ID: 39138951 [TBL] [Abstract][Full Text] [Related]
48. Discrete Choice Models for Nonmonotone Nonignorable Missing Data: Identification and Inference. Tchetgen EJT; Wang L; Sun B Stat Sin; 2018 Oct; 28(4):2069-2088. PubMed ID: 33994754 [TBL] [Abstract][Full Text] [Related]
49. G-computation and doubly robust standardisation for continuous-time data: A comparison with inverse probability weighting. Chatton A; Borgne FL; Leyrat C; Foucher Y Stat Methods Med Res; 2022 Apr; 31(4):706-718. PubMed ID: 34861799 [TBL] [Abstract][Full Text] [Related]
50. Augmented inverse probability weighted fractional imputation in quantile regression. Cheng H Pharm Stat; 2021 Jan; 20(1):25-38. PubMed ID: 32808739 [TBL] [Abstract][Full Text] [Related]
51. An alternative empirical likelihood method in missing response problems and causal inference. Ren K; Drummond CA; Brewster PS; Haller ST; Tian J; Cooper CJ; Zhang B Stat Med; 2016 Nov; 35(27):5009-5028. PubMed ID: 27417265 [TBL] [Abstract][Full Text] [Related]
52. Missing data in longitudinal studies: cross-sectional multiple imputation provides similar estimates to full-information maximum likelihood. Ferro MA Ann Epidemiol; 2014 Jan; 24(1):75-7. PubMed ID: 24210708 [TBL] [Abstract][Full Text] [Related]
53. Missing Data Analysis. Little RJ Annu Rev Clin Psychol; 2024 Jul; 20(1):149-173. PubMed ID: 38346291 [TBL] [Abstract][Full Text] [Related]
54. Propensity score weighting under limited overlap and model misspecification. Zhou Y; Matsouaka RA; Thomas L Stat Methods Med Res; 2020 Dec; 29(12):3721-3756. PubMed ID: 32693715 [TBL] [Abstract][Full Text] [Related]
55. Is using multiple imputation better than complete case analysis for estimating a prevalence (risk) difference in randomized controlled trials when binary outcome observations are missing? Mukaka M; White SA; Terlouw DJ; Mwapasa V; Kalilani-Phiri L; Faragher EB Trials; 2016 Jul; 17():341. PubMed ID: 27450066 [TBL] [Abstract][Full Text] [Related]
56. Instability of inverse probability weighting methods and a remedy for nonignorable missing data. Li P; Qin J; Liu Y Biometrics; 2023 Dec; 79(4):3215-3226. PubMed ID: 37221141 [TBL] [Abstract][Full Text] [Related]
57. Robust best linear weighted estimator with missing covariates in survival analysis. Wang CY; Hsu L; Harrison T Stat Med; 2024 Apr; 43(9):1790-1803. PubMed ID: 38402690 [TBL] [Abstract][Full Text] [Related]
58. Reflection on modern methods: combining weights for confounding and missing data. Ross RK; Breskin A; Breger TL; Westreich D Int J Epidemiol; 2022 May; 51(2):679-684. PubMed ID: 34536004 [TBL] [Abstract][Full Text] [Related]
59. On variance estimation of the inverse probability-of-treatment weighting estimator: A tutorial for different types of propensity score weights. Kostouraki A; Hajage D; Rachet B; Williamson EJ; Chauvet G; Belot A; Leyrat C Stat Med; 2024 Jun; 43(13):2672-2694. PubMed ID: 38622063 [TBL] [Abstract][Full Text] [Related]
60. Bayesian estimation of the average treatment effect on the treated using inverse weighting. Capistrano ESM; Moodie EEM; Schmidt AM Stat Med; 2019 Jun; 38(13):2447-2466. PubMed ID: 30859603 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]