These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37525439)
21. Direct Spectroscopy for Probing the Critical Role of Partial Covalency in Oxygen Reduction Reaction for Cobalt-Manganese Spinel Oxides. Long X; Yu P; Zhang N; Li C; Feng X; Ren G; Zheng S; Fu J; Cheng F; Liu X Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30970569 [TBL] [Abstract][Full Text] [Related]
22. A cobalt hydroxide nanosheet-mediated synthesis of core-shell-type Mn Kwon S; Lee JH Dalton Trans; 2020 Feb; 49(5):1652-1659. PubMed ID: 31950121 [TBL] [Abstract][Full Text] [Related]
23. A Metal-Organic Framework Derived Porous Cobalt Manganese Oxide Bifunctional Electrocatalyst for Hybrid Na-Air/Seawater Batteries. Abirami M; Hwang SM; Yang J; Senthilkumar ST; Kim J; Go WS; Senthilkumar B; Song HK; Kim Y ACS Appl Mater Interfaces; 2016 Dec; 8(48):32778-32787. PubMed ID: 27934150 [TBL] [Abstract][Full Text] [Related]
24. Preparation of monodisperse ferrite nanocrystals with tunable morphology and magnetic properties. Liang R; Tian R; Liu Z; Yan D; Wei M Chem Asian J; 2014 Apr; 9(4):1161-7. PubMed ID: 24482379 [TBL] [Abstract][Full Text] [Related]
25. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions. Li X; Lei H; Xie L; Wang N; Zhang W; Cao R Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330 [TBL] [Abstract][Full Text] [Related]
26. Colloidal Synthesis of Monodisperse High-Entropy Spinel Oxide Nanocrystals. Rowell JL; Kang M; Yoon D; Jiang KZ; Jia Y; Abruña HD; Muller DA; Robinson RD J Am Chem Soc; 2024 Jul; 146(26):17613-17617. PubMed ID: 38885442 [TBL] [Abstract][Full Text] [Related]
27. Template-free Synthesis of Stable Cobalt Manganese Spinel Hollow Nanostructured Catalysts for Highly Water-Resistant CO Oxidation. Xu Z; Zhang Y; Li X; Qin L; Meng Q; Zhang G; Fan Z; Xue Z; Guo X; Liu Q; Li Q; Mao B; Liu Z iScience; 2019 Nov; 21():19-30. PubMed ID: 31654851 [TBL] [Abstract][Full Text] [Related]
28. Transition metal oxides with perovskite and spinel structures for electrochemical energy production applications. Flores-Lasluisa JX; Huerta F; Cazorla-Amorós D; Morallón E Environ Res; 2022 Nov; 214(Pt 1):113731. PubMed ID: 35753372 [TBL] [Abstract][Full Text] [Related]
29. Efficient Ternary Mn-Based Spinel Oxide with Multiple Active Sites for Oxygen Evolution Reaction Discovered via High-Throughput Screening Methods. Ahmed MG; Tay YF; Chi X; Zhang M; Tan JMR; Chiam SY; Rusydi A; Wong LH Small; 2023 Jan; 19(2):e2204520. PubMed ID: 36354178 [TBL] [Abstract][Full Text] [Related]
30. Long-Term Colloidally Stable Aqueous Dispersions of ≤5 nm Spinel Ferrite Nanoparticles. Eckardt M; Thomä SLJ; Dulle M; Hörner G; Weber B; Förster S; Zobel M ChemistryOpen; 2020 Nov; 9(11):1214-1220. PubMed ID: 33294306 [TBL] [Abstract][Full Text] [Related]
31. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems. Park MS; Kim J; Kim KJ; Lee JW; Kim JH; Yamauchi Y Phys Chem Chem Phys; 2015 Dec; 17(46):30963-77. PubMed ID: 26549729 [TBL] [Abstract][Full Text] [Related]
32. Exploring Lithium-Cobalt-Nickel Oxide Spinel Electrodes for ≥3.5 V Li-Ion Cells. Lee E; Blauwkamp J; Castro FC; Wu J; Dravid VP; Yan P; Wang C; Kim S; Wolverton C; Benedek R; Dogan F; Park JS; Croy JR; Thackeray MM ACS Appl Mater Interfaces; 2016 Oct; 8(41):27720-27729. PubMed ID: 27700026 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of highly active and stable spinel-type oxygen evolution electrocatalysts by a rapid inorganic self-templating method. Ma TY; Dai S; Jaroniec M; Qiao SZ Chemistry; 2014 Sep; 20(39):12669-76. PubMed ID: 25124830 [TBL] [Abstract][Full Text] [Related]
34. Cation Distribution in Spinel Ferrite Nanocrystals: Characterization, Impact on their Physical Properties, and Opportunities for Synthetic Control. Sanchez-Lievanos KR; Stair JL; Knowles KE Inorg Chem; 2021 Apr; 60(7):4291-4305. PubMed ID: 33734686 [TBL] [Abstract][Full Text] [Related]
35. Cation-Tuning Induced d-Band Center Modulation on Co-Based Spinel Oxide for Oxygen Reduction/Evolution Reaction. Wang Z; Huang J; Wang L; Liu Y; Liu W; Zhao S; Liu ZQ Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202114696. PubMed ID: 34970837 [TBL] [Abstract][Full Text] [Related]
36. Understanding the Effects of Iron Precursor Ligation and Oxidation State Leads to Improved Synthetic Control for Spinel Iron Oxide Nanocrystals. Plummer LK; Hutchison JE Inorg Chem; 2020 Oct; 59(20):15074-15087. PubMed ID: 33006469 [TBL] [Abstract][Full Text] [Related]
37. Ternary Spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) Porous Nanorods as Bifunctional Cathode Materials for Lithium-O2 Batteries. Mohamed SG; Tsai YQ; Chen CJ; Tsai YT; Hung TF; Chang WS; Liu RS ACS Appl Mater Interfaces; 2015 Jun; 7(22):12038-46. PubMed ID: 25984925 [TBL] [Abstract][Full Text] [Related]
38. Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials. Lieberman CM; Barry MC; Wei Z; Rogachev AY; Wang X; Liu JL; Clérac R; Chen YS; Filatov AS; Dikarev EV Inorg Chem; 2017 Aug; 56(16):9574-9584. PubMed ID: 28758752 [TBL] [Abstract][Full Text] [Related]