These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37525441)

  • 1. Sequence-Encoded Differences in Phase Separation Enable Formation of Resilin-like Polypeptide-Based Microstructured Hydrogels.
    Patkar SS; Garcia Garcia C; Palmese LL; Kiick KL
    Biomacromolecules; 2023 Aug; 24(8):3729-3741. PubMed ID: 37525441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alteration of Microstructure in Biopolymeric Hydrogels
    Garcia Garcia C; Patkar SS; Jovic N; Mittal J; Kiick KL
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4244-4257. PubMed ID: 33464811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous Liquid-Liquid Phase Separation of Resilin-Like Polypeptide/Polyethylene Glycol Solutions for the Formation of Microstructured Hydrogels.
    Lau HK; Li L; Jurusik AK; Sabanayagam CR; Kiick KL
    ACS Biomater Sci Eng; 2017 May; 3(5):757-766. PubMed ID: 33440486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant Resilin-Based Bioelastomers for Regenerative Medicine Applications.
    Li L; Mahara A; Tong Z; Levenson EA; McGann CL; Jia X; Yamaoka T; Kiick KL
    Adv Healthc Mater; 2016 Jan; 5(2):266-75. PubMed ID: 26632334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resilin-PEG Hybrid Hydrogels Yield Degradable Elastomeric Scaffolds with Heterogeneous Microstructure.
    McGann CL; Akins RE; Kiick KL
    Biomacromolecules; 2016 Jan; 17(1):128-40. PubMed ID: 26646060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructured Elastomer-PEG Hydrogels via Kinetic Capture of Aqueous Liquid-Liquid Phase Separation.
    Lau HK; Paul A; Sidhu I; Li L; Sabanayagam CR; Parekh SH; Kiick KL
    Adv Sci (Weinh); 2018 Jun; 5(6):1701010. PubMed ID: 29938180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromechanical Properties of Microstructured Elastomeric Hydrogels.
    Lau HK; Rattan S; Fu H; Garcia CG; Barber DM; Kiick KL; Crosby AJ
    Macromol Biosci; 2020 May; 20(5):e1900360. PubMed ID: 32237050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resilin-Like Polypeptide Hydrogels Engineered for Versatile Biological Functions.
    Li L; Tong Z; Jia X; Kiick KL
    Soft Matter; 2013 Jan; 9(3):665-673. PubMed ID: 23505396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent co-assembly between resilin-like polypeptide and peptide amphiphile into hydrogels with controlled nanostructure and improved mechanical properties.
    Okesola BO; Lau HK; Derkus B; Boccorh DK; Wu Y; Wark AW; Kiick KL; Mata A
    Biomater Sci; 2020 Feb; 8(3):846-857. PubMed ID: 31793933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for producing microstructured hydrogels for targeted applications in biology.
    Garcia Garcia C; Kiick KL
    Acta Biomater; 2019 Jan; 84():34-48. PubMed ID: 30465923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-ene Photocrosslinking of Cytocompatible Resilin-Like Polypeptide-PEG Hydrogels.
    McGann CL; Dumm RE; Jurusik AK; Sidhu I; Kiick KL
    Macromol Biosci; 2016 Jan; 16(1):129-38. PubMed ID: 26435299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resilin-mimetics as a smart biomaterial platform for biomedical applications.
    Balu R; Dutta NK; Dutta AK; Choudhury NR
    Nat Commun; 2021 Jan; 12(1):149. PubMed ID: 33420053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Adhesive and Conductive Resilin-Based Hydrogels for Wearable Sensors.
    Hu X; Xia XX; Huang SC; Qian ZG
    Biomacromolecules; 2019 Sep; 20(9):3283-3293. PubMed ID: 31033284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient dynamic mechanical properties of resilin-based elastomeric hydrogels.
    Li L; Kiick KL
    Front Chem; 2014; 2():21. PubMed ID: 24809044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence Context and Complex Hofmeister Salt Interactions Dictate Phase Separation Propensity of Resilin-like Polypeptides.
    Otis JB; Sharpe S
    Biomacromolecules; 2022 Dec; 23(12):5225-5238. PubMed ID: 36378745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct and Efficient Incorporation of DOPA into Resilin-Like Proteins Enables Cross-Linking into Tunable Hydrogels.
    Zhu YJ; Huang SC; Qian ZG; Xia XX
    Biomacromolecules; 2023 Apr; 24(4):1774-1783. PubMed ID: 36952229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of resilin-like proteins with tunable mechanical properties.
    Su RS; Gill EE; Kim Y; Liu JC
    J Mech Behav Biomed Mater; 2019 Mar; 91():68-75. PubMed ID: 30544024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-triggered phase separation of a hydrophilic resilin-like polypeptide.
    Li L; Luo T; Kiick KL
    Macromol Rapid Commun; 2015 Jan; 36(1):90-5. PubMed ID: 25424611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic Cross-Linking of Resilin-Based Proteins for Vascular Tissue Engineering Applications.
    Kim Y; Gill EE; Liu JC
    Biomacromolecules; 2016 Aug; 17(8):2530-9. PubMed ID: 27400383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromechanical characterization of soft, biopolymeric hydrogels: stiffness, resilience, and failure.
    Rattan S; Li L; Lau HK; Crosby AJ; Kiick KL
    Soft Matter; 2018 May; 14(18):3478-3489. PubMed ID: 29700541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.