These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 37525661)
21. Ankle Exoskeleton Assistance Can Improve Over-Ground Walking Economy in Individuals With Cerebral Palsy. Orekhov G; Fang Y; Luque J; Lerner ZF IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):461-467. PubMed ID: 31940542 [TBL] [Abstract][Full Text] [Related]
22. The Effects of Incline Level on Optimized Lower-Limb Exoskeleton Assistance: A Case Series. Franks PW; Bryan GM; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2494-2505. PubMed ID: 35930513 [TBL] [Abstract][Full Text] [Related]
23. Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study. Shafer BA; Philius SA; Nuckols RW; McCall J; Young AJ; Sawicki GS Front Bioeng Biotechnol; 2021; 9():615358. PubMed ID: 33954159 [TBL] [Abstract][Full Text] [Related]
24. Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton. Kinnaird CR; Ferris DP IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):31-7. PubMed ID: 19211321 [TBL] [Abstract][Full Text] [Related]
25. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons. Jackson RW; Collins SH J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764 [TBL] [Abstract][Full Text] [Related]
26. Optimizing Exoskeleton Assistance for Faster Self-Selected Walking. Song S; Collins SH IEEE Trans Neural Syst Rehabil Eng; 2021; 29():786-795. PubMed ID: 33877982 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of controllers for augmentative hip exoskeletons and their effects on metabolic cost of walking: explicit versus implicit synchronization. Manzoori AR; Malatesta D; Primavesi J; Ijspeert A; Bouri M Front Bioeng Biotechnol; 2024; 12():1324587. PubMed ID: 38532879 [No Abstract] [Full Text] [Related]
29. Predicting walking response to ankle exoskeletons using data-driven models. Rosenberg MC; Banjanin BS; Burden SA; Steele KM J R Soc Interface; 2020 Oct; 17(171):20200487. PubMed ID: 33050782 [TBL] [Abstract][Full Text] [Related]
31. Actuation Timing Perception of a Powered Ankle Exoskeleton and Its Associated Ankle Angle Changes During Walking. Peng X; Acosta-Sojo Y; Wu MI; Stirling L IEEE Trans Neural Syst Rehabil Eng; 2022; 30():869-877. PubMed ID: 35333715 [TBL] [Abstract][Full Text] [Related]
32. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns]. Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968 [TBL] [Abstract][Full Text] [Related]
33. Usability and performance validation of an ultra-lightweight and versatile untethered robotic ankle exoskeleton. Orekhov G; Fang Y; Cuddeback CF; Lerner ZF J Neuroeng Rehabil; 2021 Nov; 18(1):163. PubMed ID: 34758857 [TBL] [Abstract][Full Text] [Related]
34. Predictive Simulation of Human Walking Augmented by a Powered Ankle Exoskeleton. Nguyen VQ; Umberger BR; Sup FC IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():53-58. PubMed ID: 31374606 [TBL] [Abstract][Full Text] [Related]
35. A transition point: Assistance magnitude is a critical parameter when providing assistance during walking with an energy-removing exoskeleton or biomechanical energy harvester. Shepertycky M; Liu YF; Li Q PLoS One; 2023; 18(8):e0289811. PubMed ID: 37561773 [TBL] [Abstract][Full Text] [Related]
36. Ultrasound imaging links soleus muscle neuromechanics and energetics during human walking with elastic ankle exoskeletons. Nuckols RW; Dick TJM; Beck ON; Sawicki GS Sci Rep; 2020 Feb; 10(1):3604. PubMed ID: 32109239 [TBL] [Abstract][Full Text] [Related]
37. A Simple Model to Estimate Plantarflexor Muscle-Tendon Mechanics and Energetics During Walking With Elastic Ankle Exoskeletons. Sawicki GS; Khan NS IEEE Trans Biomed Eng; 2016 May; 63(5):914-923. PubMed ID: 26485350 [TBL] [Abstract][Full Text] [Related]
38. Assisting walking balance using a bio-inspired exoskeleton controller. Afschrift M; van Asseldonk E; van Mierlo M; Bayon C; Keemink A; D'Hondt L; van der Kooij H; De Groote F J Neuroeng Rehabil; 2023 Jun; 20(1):82. PubMed ID: 37370175 [TBL] [Abstract][Full Text] [Related]
39. Improving the Energy Cost of Incline Walking and Stair Ascent With Ankle Exoskeleton Assistance in Cerebral Palsy. Fang Y; Orekhov G; Lerner ZF IEEE Trans Biomed Eng; 2022 Jul; 69(7):2143-2152. PubMed ID: 34941495 [TBL] [Abstract][Full Text] [Related]
40. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking. Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]