These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37526157)

  • 1. Diffusion coefficients of linear trimer particles.
    Lüders A; Heß B; Nielaba P
    J Chem Phys; 2023 Aug; 159(5):. PubMed ID: 37526157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic diffusion coefficients of dumbbell- and spherocylinder-shaped colloids and their application in simulations of crowded monolayers.
    Lüders A; Zander E; Nielaba P
    J Chem Phys; 2021 Sep; 155(10):104113. PubMed ID: 34525819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Group formation and collective motion of colloidal rods with an activity triggered by visual perception.
    Stengele P; Lüders A; Nielaba P
    Phys Rev E; 2022 Jul; 106(1-1):014603. PubMed ID: 35974625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dissipative particle dynamics model for studying dynamic phenomena in colloidal rod suspensions.
    Liu Y; Widmer-Cooper A
    J Chem Phys; 2021 Mar; 154(10):104120. PubMed ID: 33722052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and dynamics of hydrodynamically interacting finite-size Brownian particles in a spherical cavity: Spheres and cylinders.
    Li J; Jiang X; Singh A; Heinonen OG; Hernández-Ortiz JP; de Pablo JJ
    J Chem Phys; 2020 May; 152(20):204109. PubMed ID: 32486693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial colloidal rod dynamics: Coefficients, simulations, and analysis.
    Yang Y; Bevan MA
    J Chem Phys; 2017 Aug; 147(5):054902. PubMed ID: 28789549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion in heterogeneous discs and spheres: New closed-form expressions for exit times and homogenization formulas.
    Carr EJ; Ryan JM; Simpson MJ
    J Chem Phys; 2020 Aug; 153(7):074115. PubMed ID: 32828075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brownian dynamics simulations of the self- and collective rotational diffusion coefficients of rigid long thin rods.
    Tao YG; den Otter WK; Padding JT; Dhont JK; Briels WJ
    J Chem Phys; 2005 Jun; 122(24):244903. PubMed ID: 16035812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of curvature on the diffusion of colloidal bananas.
    Ulbrich JA; Fernández-Rico C; Rost B; Vialetto J; Isa L; Urbach JS; Dullens RPA
    Phys Rev E; 2023 Apr; 107(4):L042602. PubMed ID: 37198802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brownian dynamics simulations of oblate and prolate colloidal particles in nematic liquid crystals.
    Morillo N; Patti A; Cuetos A
    J Chem Phys; 2019 May; 150(20):204905. PubMed ID: 31153174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the validity of Stokes-Einstein-Debye relations for rotational diffusion in colloidal suspensions.
    Koenderink GH; Zhang H; Aarts DG; Lettinga MP; Philipse AP; Nägele G
    Faraday Discuss; 2003; 123():335-54; discussion 401-21. PubMed ID: 12638869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-diffusion of rodlike and spherical particles in a matrix of charged colloidal spheres: a comparison between fluorescence recovery after photobleaching and fluorescence correlation spectroscopy.
    Lellig C; Wagner J; Hempelmann R; Keller S; Lumma D; Härtl W
    J Chem Phys; 2004 Oct; 121(14):7022-9. PubMed ID: 15473763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.
    Banchio AJ; Heinen M; Holmqvist P; Nägele G
    J Chem Phys; 2018 Apr; 148(13):134902. PubMed ID: 29626910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brownian dynamics of confined rigid bodies.
    Delong S; Balboa Usabiaga F; Donev A
    J Chem Phys; 2015 Oct; 143(14):144107. PubMed ID: 26472363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion, sedimentation, and rheology of concentrated suspensions of core-shell particles.
    Abade GC; Cichocki B; Ekiel-Jeżewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2012 Mar; 136(10):104902. PubMed ID: 22423856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal dynamics: influence of diffusion, inertia and colloidal forces on cluster formation.
    Kovalchuk N; Starov V; Langston P; Hilal N; Zhdanov V
    J Colloid Interface Sci; 2008 Sep; 325(2):377-85. PubMed ID: 18619605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of bending flexibility on the phase behavior and dynamics of rods.
    Naderi S; van der Schoot P
    J Chem Phys; 2014 Sep; 141(12):124901. PubMed ID: 25273468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic radii and diffusion coefficients of particle aggregates derived from the bead model.
    Adamczyk Z; Sadlej K; Wajnryb E; Ekiel-Jezewska ML; Warszyński P
    J Colloid Interface Sci; 2010 Jul; 347(2):192-201. PubMed ID: 20430400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroviscous effect for a confined nanosphere in solution.
    Behjatian A; Bespalova M; Karedla N; Krishnan M
    Phys Rev E; 2020 Oct; 102(4-1):042607. PubMed ID: 33212723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.