These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37526270)

  • 1. Discovery and validation of metabolite markers in bloodstains for bloodstain age estimation.
    Lee S; Lee YR; Lee J; Kang HG
    Analyst; 2023 Aug; 148(17):4180-4188. PubMed ID: 37526270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bloodstain Metabolite Markers: Discovery and Validation for Estimating Age of Bloodstain within 7 Days.
    Lee YR; Lee S; Kwon S; Lee J; Kang HG
    Anal Chem; 2022 Oct; 94(39):13377-13384. PubMed ID: 36125254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of the Metabolite Ergothioneine as a Forensic Marker in Bloodstains.
    Lee S; Mun S; Lee YR; Lee J; Kang HG
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internal standard metabolites for estimating origin blood volume of bloodstains.
    Lee S; Lee YR; Lee J; Kang HG
    Forensic Sci Int; 2023 Jan; 342():111533. PubMed ID: 36516660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Age of Bloodstains by Mass-Spectrometry: A Metabolomic Approach.
    Seok AE; Lee J; Lee YR; Lee YJ; Kim HJ; Ihm C; Sung HJ; Hyun SH; Kang HG
    Anal Chem; 2018 Nov; 90(21):12431-12441. PubMed ID: 30350957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of donor age markers from bloodstain by LC-MS/MS using a metabolic approach.
    Kim HJ; Lee YR; Lee S; Kwon S; Chun YT; Hyun SH; Sung HJ; Lee J; Kang HG
    Int J Legal Med; 2022 Jan; 136(1):297-308. PubMed ID: 34218338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The estimation of bloodstain age utilizing circRNAs and mRNAs biomarkers.
    Wei Y; Wang J; Wang Q; Cong B; Li S
    Forensic Sci Int; 2022 Sep; 338():111408. PubMed ID: 35901585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical profilometry for forensic bloodstain imaging.
    Vale B; Orr A; Elliott C; Stotesbury T
    Microsc Res Tech; 2023 Oct; 86(10):1401-1408. PubMed ID: 37133225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal standard metabolites for obtaining absolute quantitative information on the components of bloodstains by standardization of samples.
    Lee YR; Lee J; Seok AE; Kim HJ; Lee YJ; Ihm C; Sung HJ; Hyun SH; Kang HG
    Forensic Sci Int; 2019 Jan; 294():69-75. PubMed ID: 30469133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of bloodstain deposition time within a 24-h day-night cycle with rhythmic mRNA based on a machine learning algorithm.
    Cheng F; Li W; Ji Z; Li J; Hu W; Zhao M; Yu D; Simayijiang H; Yan J
    Forensic Sci Int Genet; 2023 Sep; 66():102910. PubMed ID: 37406538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Raman "spectroscopic clock" for bloodstain age determination: the first week after deposition.
    Doty KC; McLaughlin G; Lednev IK
    Anal Bioanal Chem; 2016 Jun; 408(15):3993-4001. PubMed ID: 27007735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment of a random forest regression model to estimate the age of bloodstains based on temporal colorimetric analysis.
    Seki T; Hsiao YY; Ishizawa F; Sugano Y; Takahashi Y
    Leg Med (Tokyo); 2024 Jul; 69():102343. PubMed ID: 37923590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bloodstain examination and DNA typing from hand-washed bloodstains on clothes.
    Nakanishi H; Ohmori T; Yoneyama K; Hara M; Takada A; Saito K
    Leg Med (Tokyo); 2020 Nov; 47():101758. PubMed ID: 32702606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian metabolites for evaluating the timing of bloodstain deposition: A preliminary study.
    Cheng F; Li W; Li J; Ji Z; Hu W; Zhao M; Yu D; Zhang L; Yuan P; Simayijiang H; Yan J
    Forensic Sci Int; 2024 Aug; 361():112102. PubMed ID: 38889602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman Spectroscopy for the Time since Deposition Estimation of a Menstrual Bloodstain.
    Weber A; Wójtowicz A; Wietecha-Posłuszny R; Lednev IK
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining how diluted bloodstains were derived: Inferring distinctive characteristics and formulating a guideline.
    van den Berge M; de Vries FG; van der Scheer M; Sijen T; Meijrink L
    Forensic Sci Int; 2019 Sep; 302():109918. PubMed ID: 31421437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of environmental conditions on bloodstain metabolite analysis.
    Lee YR; Lee S; Kwon S; Lee J; Kang HG
    Environ Res; 2023 Jan; 216(Pt 3):114743. PubMed ID: 36356665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bloodstain age estimation through infrared spectroscopy and Chemometric models.
    Kumar R; Sharma K; Sharma V
    Sci Justice; 2020 Nov; 60(6):538-546. PubMed ID: 33077037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of infrared photography for latent bloodstain visualization and the influence of time.
    Winnepenninckx A; Verhoeven E; Vermeulen S; Bekaert B
    Forensic Sci Int; 2022 Feb; 331():111167. PubMed ID: 34992011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short and Long Time Bloodstains Age Determination by Colorimetric Analysis: A Pilot Study.
    Marrone A; La Russa D; Montesanto A; Lagani V; La Russa MF; Pellegrino D
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.