These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Stable and inhalable powder formulation of mRNA-LNPs using pH-modified spray-freeze drying. Ogawa K; Aikawa O; Tagami T; Ito T; Tahara K; Kawakami S; Ozeki T Int J Pharm; 2024 Nov; 665():124632. PubMed ID: 39182740 [TBL] [Abstract][Full Text] [Related]
4. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery. Sinsuebpol C; Chatchawalsaisin J; Kulvanich P Drug Des Devel Ther; 2013; 7():861-73. PubMed ID: 24039397 [TBL] [Abstract][Full Text] [Related]
5. Development of a Spray-Dried Formulation of Peptide-DNA Nanoparticles into a Dry Powder for Pulmonary Delivery Using Factorial Design. Munir M; Kett VL; Dunne NJ; McCarthy HO Pharm Res; 2022 Jun; 39(6):1215-1232. PubMed ID: 35441318 [TBL] [Abstract][Full Text] [Related]
6. Effect of lipid composition on RNA-Lipid nanoparticle properties and their sensitivity to thin-film freezing and drying. AboulFotouh K; Southard B; Dao HM; Xu H; Moon C; Williams Iii RO; Cui Z Int J Pharm; 2024 Jan; 650():123688. PubMed ID: 38070660 [TBL] [Abstract][Full Text] [Related]
7. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. Qiu Y; Man RCH; Liao Q; Kung KLK; Chow MYT; Lam JKW J Control Release; 2019 Nov; 314():102-115. PubMed ID: 31629037 [TBL] [Abstract][Full Text] [Related]
8. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants. Cheow WS; Ng ML; Kho K; Hadinoto K Int J Pharm; 2011 Feb; 404(1-2):289-300. PubMed ID: 21093560 [TBL] [Abstract][Full Text] [Related]
9. Development of inhalable hyaluronan/mannitol composite dry powders for flucytosine repositioning in local therapy of lung infections. Costabile G; d'Angelo I; d'Emmanuele di Villa Bianca R; Mitidieri E; Pompili B; Del Porto P; Leoni L; Visca P; Miro A; Quaglia F; Imperi F; Sorrentino R; Ungaro F J Control Release; 2016 Sep; 238():80-91. PubMed ID: 27449745 [TBL] [Abstract][Full Text] [Related]
10. Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation. Shetty N; Park H; Zemlyanov D; Mangal S; Bhujbal S; Zhou QT Int J Pharm; 2018 Jun; 544(1):222-234. PubMed ID: 29678544 [TBL] [Abstract][Full Text] [Related]
11. Enhanced dispersibility and deposition of spray-dried powders for pulmonary gene therapy. Li HY; Neill H; Innocent R; Seville P; Williamson I; Birchall JC J Drug Target; 2003 Aug; 11(7):425-32. PubMed ID: 15203931 [TBL] [Abstract][Full Text] [Related]
12. Aerosol delivery of nanoparticles in uniform mannitol carriers formulated by ultrasonic spray freeze drying. D'Addio SM; Chan JG; Kwok PC; Benson BR; Prud'homme RK; Chan HK Pharm Res; 2013 Nov; 30(11):2891-901. PubMed ID: 23893019 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the effects of storage conditions on spray-dried siRNA-LNPs before and after subsequent drying. Zimmermann CM; Deßloch L; Jürgens DC; Luciani P; Merkel OM Eur J Pharm Biopharm; 2023 Dec; 193():218-226. PubMed ID: 37956785 [TBL] [Abstract][Full Text] [Related]
14. Inhalable microparticle platform based on a novel shell-forming lipid excipient and its feasibility for respirable delivery of biologics. Wang H; Connaughton P; Lachacz K; Carrigy N; Ordoubadi M; Lechuga-Ballesteros D; Vehring R Eur J Pharm Biopharm; 2022 Aug; 177():308-322. PubMed ID: 35905804 [TBL] [Abstract][Full Text] [Related]
15. Budesonide dry powder for inhalation: effects of leucine and mannitol on the efficiency of delivery. Rattanupatam T; Srichana T Drug Deliv; 2014 Sep; 21(6):397-405. PubMed ID: 24401124 [TBL] [Abstract][Full Text] [Related]
16. Optimization of spray-dried porous microparticles preparation for pulmonary delivery. Peštálová A; Hořavová H; Gajdziok J Ceska Slov Farm; 2023; 72(3):132-140. PubMed ID: 37648429 [TBL] [Abstract][Full Text] [Related]
17. Characterization of spray dried powders with nucleic acid-containing PEI nanoparticles. Keil TWM; Feldmann DP; Costabile G; Zhong Q; da Rocha S; Merkel OM Eur J Pharm Biopharm; 2019 Oct; 143():61-69. PubMed ID: 31445157 [TBL] [Abstract][Full Text] [Related]
18. Pulmonary delivery of an ultra-fine oxytocin dry powder formulation: potential for treatment of postpartum haemorrhage in developing countries. Prankerd RJ; Nguyen TH; Ibrahim JP; Bischof RJ; Nassta GC; Olerile LD; Russell AS; Meiser F; Parkington HC; Coleman HA; Morton DA; McIntosh MP PLoS One; 2013; 8(12):e82965. PubMed ID: 24376618 [TBL] [Abstract][Full Text] [Related]
19. Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases. Carneiro SP; Greco A; Chiesa E; Genta I; Merkel OM Expert Opin Drug Deliv; 2023 Apr; 20(4):471-487. PubMed ID: 36896650 [TBL] [Abstract][Full Text] [Related]
20. Rifampicin-Carbohydrate Spray-Dried Nanocomposite: A Futuristic Multiparticulate Platform For Pulmonary Delivery. Mehanna MM; Mohyeldin SM; Elgindy NA Int J Nanomedicine; 2019; 14():9089-9112. PubMed ID: 31819421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]