BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37527056)

  • 1. Ligand-Copper(I) Primary O
    Kim B; Karlin KD
    Acc Chem Res; 2023 Aug; 56(16):2197-2212. PubMed ID: 37527056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.
    Hematian S; Garcia-Bosch I; Karlin KD
    Acc Chem Res; 2015 Aug; 48(8):2462-74. PubMed ID: 26244814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity studies on Fe(III)-(O2(2-))-Cu(II) compounds: influence of the ligand architecture and copper ligand denticity.
    Chufán EE; Mondal B; Gandhi T; Kim E; Rubie ND; Moënne-Loccoz P; Karlin KD
    Inorg Chem; 2007 Aug; 46(16):6382-94. PubMed ID: 17616124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dicopper(I) complexes of unsymmetrical binucleating ligands and their dioxygen reactivities.
    Murthy NN; Mahroof-Tahir M; Karlin KD
    Inorg Chem; 2001 Feb; 40(4):628-35. PubMed ID: 11225103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations.
    Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD
    Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.
    Itoh S
    Acc Chem Res; 2015 Jul; 48(7):2066-74. PubMed ID: 26086527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.
    Rice DB; Massie AA; Jackson TA
    Acc Chem Res; 2017 Nov; 50(11):2706-2717. PubMed ID: 29064667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-Induced Dynamics of Peroxodicopper(II) Complexes Vary with the Ligand Architecture. One-Photon Two-Electron O2 Ejection and Formation of Mixed-Valent Cu(I)Cu(II)-Superoxide Intermediates.
    Saracini C; Ohkubo K; Suenobu T; Meyer GJ; Karlin KD; Fukuzumi S
    J Am Chem Soc; 2015 Dec; 137(50):15865-74. PubMed ID: 26651492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tridentate copper ligand influences on heme-peroxo-copper formation and properties: reduced, superoxo, and mu-peroxo iron/copper complexes.
    Kim E; Helton ME; Lu S; Moënne-Loccoz P; Incarvito CD; Rheingold AL; Kaderli S; Zuberbühler AD; Karlin KD
    Inorg Chem; 2005 Oct; 44(20):7014-29. PubMed ID: 16180864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heme-copper and Heme O
    Panda S; Phan H; Karlin KD
    J Inorg Biochem; 2023 Dec; 249():112367. PubMed ID: 37742491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper-Catalyzed Oxidative Carbon-Carbon and/or Carbon-Heteroatom Bond Formation with O
    Tang X; Wu W; Zeng W; Jiang H
    Acc Chem Res; 2018 May; 51(5):1092-1105. PubMed ID: 29648789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intramolecular Hydrogen Bonding Enhances Stability and Reactivity of Mononuclear Cupric Superoxide Complexes.
    Bhadra M; Lee JYC; Cowley RE; Kim S; Siegler MA; Solomon EI; Karlin KD
    J Am Chem Soc; 2018 Jul; 140(29):9042-9045. PubMed ID: 29957998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dioxygen reactivity of copper and heme-copper complexes possessing an imidazole-phenol cross-link.
    Kim E; Kamaraj K; Galliker B; Rubie ND; Moënne-Loccoz P; Kaderli S; Zuberbühler AD; Karlin KD
    Inorg Chem; 2005 Mar; 44(5):1238-47. PubMed ID: 15732964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.
    Haynes RK; Cheu KW; N'Da D; Coghi P; Monti D
    Infect Disord Drug Targets; 2013 Aug; 13(4):217-77. PubMed ID: 24304352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that dioxygen and substrate activation are tightly coupled in dopamine beta-monooxygenase. Implications for the reactive oxygen species.
    Evans JP; Ahn K; Klinman JP
    J Biol Chem; 2003 Dec; 278(50):49691-8. PubMed ID: 12966104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heme-Cu Binucleating Ligand Supports Heme/O
    Kim H; Sharma SK; Schaefer AW; Solomon EI; Karlin KD
    Inorg Chem; 2019 Nov; 58(22):15423-15432. PubMed ID: 31657921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site models for the Cu(A) site of peptidylglycine α-hydroxylating monooxygenase and dopamine β-monooxygenase.
    Kunishita A; Ertem MZ; Okubo Y; Tano T; Sugimoto H; Ohkubo K; Fujieda N; Fukuzumi S; Cramer CJ; Itoh S
    Inorg Chem; 2012 Sep; 51(17):9465-80. PubMed ID: 22908844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mononuclear metal-O2 complexes bearing macrocyclic N-tetramethylated cyclam ligands.
    Cho J; Sarangi R; Nam W
    Acc Chem Res; 2012 Aug; 45(8):1321-30. PubMed ID: 22612523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.