These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37527076)

  • 1. High-power, low-phase-noise, frequency-agile laser system for delivering fiber-noise-canceled pulses for strontium clock atom interferometry.
    DeRose K; Deshpande T; Wang Y; Kovachy T
    Opt Lett; 2023 Aug; 48(15):3893-3896. PubMed ID: 37527076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-locked, low-noise, frequency agile titanium:sapphire lasers for simultaneous atom interferometers.
    Müller H; Chiow SW; Long Q; Chu S
    Opt Lett; 2006 Jan; 31(2):202-4. PubMed ID: 16441030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low phase noise operation of a cavity-stabilized 698 nm AlGaInP-based VECSEL.
    Moriya PH; Lee M; Hastie JE
    Opt Express; 2023 Aug; 31(17):28018-28025. PubMed ID: 37710865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-power, fiber-laser-based source for magic-wavelength trapping in neutral-atom optical clocks.
    Eckner WJ; Young AW; Schine N; Kaufman AM
    Rev Sci Instrum; 2021 Sep; 92(9):093001. PubMed ID: 34598487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and robust architecture of a laser system for atom interferometry.
    Sarkar S; Piccon R; Merlet S; Pereira Dos Santos F
    Opt Express; 2022 Jan; 30(3):3358-3366. PubMed ID: 35209595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Momentum Transfer Clock Atom Interferometry on the 689 nm Intercombination Line of Strontium.
    Rudolph J; Wilkason T; Nantel M; Swan H; Holland CM; Jiang Y; Garber BE; Carman SP; Hogan JM
    Phys Rev Lett; 2020 Feb; 124(8):083604. PubMed ID: 32167328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-power and low-noise 532-nm continuous-wave laser for quantum gas microscopy.
    Li MD; Zheng YG; Zhang WY; Wang XK; Xiao B; Zhou ZY; Jiang L; Lian MZ; Yuan ZS; Pan JW
    Rev Sci Instrum; 2021 Aug; 92(8):083202. PubMed ID: 34470382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-noise and high-power second harmonic generation of 532 nm laser for trapping ultracold atoms.
    Wang XK; Zhou ZY; Li MD; Zheng YG; Zhang WY; Su GX; He MG; Yuan ZS
    Rev Sci Instrum; 2022 Dec; 93(12):123002. PubMed ID: 36586898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical clock with ultracold neutral atoms.
    Wilpers G; Binnewies T; Degenhardt C; Sterr U; Helmcke J; Riehle F
    Phys Rev Lett; 2002 Dec; 89(23):230801. PubMed ID: 12484992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3 GHz, Yb-fiber laser-based, few-cycle ultrafast source at the Ti:sapphire laser wavelength.
    Chen HW; Haider Z; Lim J; Xu S; Yang Z; Kärtner FX; Chang G
    Opt Lett; 2013 Nov; 38(22):4927-30. PubMed ID: 24322168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase locking of a mode-locked titanium-sapphire laser-based optical frequency comb to a reference laser using a fast piezoelectric actuator.
    Hatanaka S; Sugiyama K; Mitaki M; Misono M; Slyusarev SN; Kitano M
    Appl Opt; 2017 Apr; 56(12):3615-3621. PubMed ID: 28430232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 40  W, 780  nm laser system with compensated dual beam splitters for atom interferometry.
    Kim M; Notermans R; Overstreet C; Curti J; Asenbaum P; Kasevich MA
    Opt Lett; 2020 Dec; 45(23):6555-6558. PubMed ID: 33258860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 434 W all-fiber linear-polarization dual-frequency Yb-doped fiber laser carrying low-noise radio frequency signal.
    Huang L; Li L; Ma P; Wang X; Zhou P
    Opt Express; 2016 Nov; 24(23):26722-26731. PubMed ID: 27857403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pump-controlled flexible generation between dissipative soliton and noise-like pulses from a mode-locked Er-doped fiber laser.
    Cheng X; Huang Q; Zou C; Mou C; Yan Z; Zhou K; Zhang L
    Appl Opt; 2019 May; 58(14):3932-3937. PubMed ID: 31158212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low noise 400 W coherently combined single frequency laser beam for next generation gravitational wave detectors.
    Wellmann F; Bode N; Wessels P; Overmeyer L; Neumann J; Willke B; Kracht D
    Opt Express; 2021 Mar; 29(7):10140-10149. PubMed ID: 33820147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile, high-power 460 nm laser system for Rydberg excitation of ultracold potassium.
    Arias A; Helmrich S; Schweiger C; Ardizzone L; Lochead G; Whitlock S
    Opt Express; 2017 Jun; 25(13):14829-14839. PubMed ID: 28789066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-wall carbon nanotubes and graphene oxide-based saturable absorbers for low phase noise mode-locked fiber lasers.
    Li X; Wu K; Sun Z; Meng B; Wang Y; Wang Y; Yu X; Yu X; Zhang Y; Shum PP; Wang QJ
    Sci Rep; 2016 Apr; 6():25266. PubMed ID: 27126900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passively mode-locked III-V/silicon laser with continuous-wave optical injection.
    Cheng Y; Luo X; Song J; Liow TY; Lo GQ; Cao Y; Hu X; Li X; Lim PH; Wang QJ
    Opt Express; 2015 Mar; 23(5):6392-9. PubMed ID: 25836859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superradiance on the millihertz linewidth strontium clock transition.
    Norcia MA; Winchester MN; Cline JR; Thompson JK
    Sci Adv; 2016 Oct; 2(10):e1601231. PubMed ID: 27757423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards low timing phase noise operation in fiber lasers mode locked by graphene oxide and carbon nanotubes at 1.5 µm.
    Wu K; Li X; Wang Y; Wang QJ; Shum PP; Chen J
    Opt Express; 2015 Jan; 23(1):501-11. PubMed ID: 25835696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.