BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37527295)

  • 1. Scalable Multi-Hierarchy Embedded Platform for Neural Population Simulations.
    Gong B; Wang J; Cai G; Xu P; Chang S; Zhang Z; Liu C; Deng B; Wei X
    IEEE Trans Biomed Circuits Syst; 2024 Feb; 18(1):16-26. PubMed ID: 37527295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BrainS: Customized multi-core embedded multiple scale neuromorphic system.
    Gong B; Wang J; Lu M; Meng G; Sun K; Chang S; Zhang Z; Wei X
    Neural Netw; 2023 Aug; 165():381-392. PubMed ID: 37329782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable Digital Neuromorphic Architecture for Large-Scale Biophysically Meaningful Neural Network With Multi-Compartment Neurons.
    Yang S; Deng B; Wang J; Li H; Lu M; Che Y; Wei X; Loparo KA
    IEEE Trans Neural Netw Learn Syst; 2020 Jan; 31(1):148-162. PubMed ID: 30892250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.
    Igarashi J; Shouno O; Fukai T; Tsujino H
    Neural Netw; 2011 Nov; 24(9):950-60. PubMed ID: 21764258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic spiking neural networks with event-driven femtojoule optoelectronic neurons based on Izhikevich-inspired model.
    Lee YJ; On MB; Xiao X; Proietti R; Yoo SJB
    Opt Express; 2022 May; 30(11):19360-19389. PubMed ID: 36221716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular computational generalized neuron network for frequency situational intelligence in a multi-machine power system.
    Wei Y; Venayagamoorthy GK
    Neural Netw; 2017 Sep; 93():21-35. PubMed ID: 28527861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure.
    Feldotto B; Eppler JM; Jimenez-Romero C; Bignamini C; Gutierrez CE; Albanese U; Retamino E; Vorobev V; Zolfaghari V; Upton A; Sun Z; Yamaura H; Heidarinejad M; Klijn W; Morrison A; Cruz F; McMurtrie C; Knoll AC; Igarashi J; Yamazaki T; Doya K; Morin FO
    Front Neuroinform; 2022; 16():884180. PubMed ID: 35662903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.
    Cheung K; Schultz SR; Luk W
    Front Neurosci; 2015; 9():516. PubMed ID: 26834542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BiCoSS: Toward Large-Scale Cognition Brain With Multigranular Neuromorphic Architecture.
    Yang S; Wang J; Hao X; Li H; Wei X; Deng B; Loparo KA
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):2801-2815. PubMed ID: 33428574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cost-efficient FPGA implementation of basal ganglia and their Parkinsonian analysis.
    Yang S; Wang J; Li S; Deng B; Wei X; Yu H; Li H
    Neural Netw; 2015 Nov; 71():62-75. PubMed ID: 26318085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time computing without stable states: a new framework for neural computation based on perturbations.
    Maass W; Natschläger T; Markram H
    Neural Comput; 2002 Nov; 14(11):2531-60. PubMed ID: 12433288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SWsnn: A Novel Simulator for Spiking Neural Networks.
    Wang Z; Li X; Fan J; Meng J; Lin Z; Pan Y; Wei Y
    J Comput Biol; 2023 Sep; 30(9):951-960. PubMed ID: 37585615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SSTE: Syllable-Specific Temporal Encoding to FORCE-learn audio sequences with an associative memory approach.
    Jannesar N; Akbarzadeh-Sherbaf K; Safari S; Vahabie AH
    Neural Netw; 2024 Sep; 177():106368. PubMed ID: 38761415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supercomputers ready for use as discovery machines for neuroscience.
    Helias M; Kunkel S; Masumoto G; Igarashi J; Eppler JM; Ishii S; Fukai T; Morrison A; Diesmann M
    Front Neuroinform; 2012; 6():26. PubMed ID: 23129998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Embedded Multi-Core Real-Time Simulation Platform of Basal Ganglia for Deep Brain Stimulation.
    Wei X; Zhang H; Gong B; Chang S; Lu M; Yi G; Zhang Z; Deng B; Wang J
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1328-1340. PubMed ID: 34232884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.