These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37527306)

  • 21. An Overview of Wearable Haptic Technologies and Their Performance in Virtual Object Exploration.
    van Wegen M; Herder JL; Adelsberger R; Pastore-Wapp M; van Wegen EEH; Bohlhalter S; Nef T; Krack P; Vanbellingen T
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recognizing familiar objects by hand and foot: Haptic shape perception generalizes to inputs from unusual locations and untrained body parts.
    Lawson R
    Atten Percept Psychophys; 2014 Feb; 76(2):541-58. PubMed ID: 24197503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Testing of an assistive robot system for haptic exploration of objects.
    Becerra L; Pedrozo Campos Antunes T; Capel HM; Wiebe SA; Adams KD
    Assist Technol; 2020 May; 32(3):144-152. PubMed ID: 30148684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pantomime-grasping: the 'return' of haptic feedback supports the absolute specification of object size.
    Davarpanah Jazi S; Yau M; Westwood DA; Heath M
    Exp Brain Res; 2015 Jul; 233(7):2029-40. PubMed ID: 25869741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two hands, one perception: how bimanual haptic information is combined by the brain.
    Squeri V; Sciutti A; Gori M; Masia L; Sandini G; Konczak J
    J Neurophysiol; 2012 Jan; 107(2):544-50. PubMed ID: 22031771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Grasping trajectories in a virtual environment adhere to Weber's law.
    Ozana A; Berman S; Ganel T
    Exp Brain Res; 2018 Jun; 236(6):1775-1787. PubMed ID: 29663023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Propping Up Virtual Reality With Haptic Proxies.
    Nilsson NC; Zenner A; Simeone AL; Johnsen K; Sandor C; Billinghurst M
    IEEE Comput Graph Appl; 2021; 41(5):104-112. PubMed ID: 34506272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Haptic Augmentation for Teleoperation through Virtual Grasping Points.
    Panzirsch M; Balachandran R; Weber B; Ferre M; Artigas J
    IEEE Trans Haptics; 2018; 11(3):400-416. PubMed ID: 29994289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loss of haptic feedback impairs control of hand posture: a study in chronically deafferented individuals when grasping and lifting objects.
    Miall RC; Rosenthal O; Ørstavik K; Cole JD; Sarlegna FR
    Exp Brain Res; 2019 Sep; 237(9):2167-2184. PubMed ID: 31209510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Grasping a 2D object: terminal haptic feedback supports an absolute visuo-haptic calibration.
    Hosang S; Chan J; Davarpanah Jazi S; Heath M
    Exp Brain Res; 2016 Apr; 234(4):945-54. PubMed ID: 26680769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors.
    Spiers AJ; Liarokapis MV; Calli B; Dollar AM
    IEEE Trans Haptics; 2016; 9(2):207-20. PubMed ID: 26829804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Cutaneous Feedback on the Perception of Virtual Object Weight during Manipulation.
    Park J; Son B; Han I; Lee W
    Sci Rep; 2020 Jan; 10(1):1357. PubMed ID: 31992799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contactless Haptic Display Through Magnetic Field Control.
    Lu X; Yan Y; Qi B; Qian H; Sun J; Quigley A
    IEEE Trans Haptics; 2022; 15(2):328-338. PubMed ID: 35171776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Grasping movements toward seen and handheld objects.
    Camponogara I; Volcic R
    Sci Rep; 2019 Mar; 9(1):3665. PubMed ID: 30842478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Survey on Hand-Based Haptic Interaction for Virtual Reality.
    Tong Q; Wei W; Zhang Y; Xiao J; Wang D
    IEEE Trans Haptics; 2023; 16(2):154-170. PubMed ID: 37040254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. No need to touch this: Bimanual haptic slant adaptation does not require touch.
    Glowania C; Plaisier MA; Ernst MO; Van Dam LCJ
    PLoS One; 2020; 15(7):e0236824. PubMed ID: 32735569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Role of Visual and Haptic Feedback During Dynamically Coupled Bimanual Manipulation.
    Contu S; Hughes CM; Masia L
    IEEE Trans Haptics; 2016; 9(4):536-547. PubMed ID: 27655023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands.
    Mateo CM; Gil P; Torres F
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Memory delay and haptic feedback influence the dissociation of tactile cues for perception and action.
    Davarpanah Jazi S; Hosang S; Heath M
    Neuropsychologia; 2015 May; 71():91-100. PubMed ID: 25796409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.