These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 37527332)
41. Reaction Mechanism of Iodine-Catalyzed Michael Additions. von der Heiden D; Bozkus S; Klussmann M; Breugst M J Org Chem; 2017 Apr; 82(8):4037-4043. PubMed ID: 28349682 [TBL] [Abstract][Full Text] [Related]
42. The halogen bond between amantadine and iodine and its application in the determination of amantadine hydrochloride in pharmaceuticals. Yan XQ; Wang H; Chen WD; Jin WJ Anal Sci; 2014; 30(3):365-70. PubMed ID: 24614731 [TBL] [Abstract][Full Text] [Related]
43. Electrostatics and polarization determine the strength of the halogen bond: a red card for charge transfer. Brinck T; Borrfors AN J Mol Model; 2019 Apr; 25(5):125. PubMed ID: 31020416 [TBL] [Abstract][Full Text] [Related]
44. Theoretical studies on the common catalytic mechanism of transketolase by using simplified models. Sheng X; Liu Y; Liu C J Mol Graph Model; 2013 Feb; 39():23-8. PubMed ID: 23220278 [TBL] [Abstract][Full Text] [Related]
45. Gauging the Strength of the Molecular Halogen Bond via Experimental Electron Density and Spectroscopy. Otte F; Kleinheider J; Grabe B; Hiller W; Busse F; Wang R; Kreienborg NM; Merten C; Englert U; Strohmann C ACS Omega; 2023 Jun; 8(24):21531-21539. PubMed ID: 37360450 [TBL] [Abstract][Full Text] [Related]
46. Activation of metal-involved halogen bonds and classical halogen bonds in gold(I) catalysis. Li Y; Sun Y; Zhao C; Zeng Y Dalton Trans; 2023 Apr; 52(14):4517-4525. PubMed ID: 36920245 [TBL] [Abstract][Full Text] [Related]
48. Substituent Effects on the [N-I-N](+) Halogen Bond. Carlsson AC; Mehmeti K; Uhrbom M; Karim A; Bedin M; Puttreddy R; Kleinmaier R; Neverov AA; Nekoueishahraki B; Gräfenstein J; Rissanen K; Erdélyi M J Am Chem Soc; 2016 Aug; 138(31):9853-63. PubMed ID: 27265247 [TBL] [Abstract][Full Text] [Related]
49. Nature of hydrogen-bond-enhanced halogen bonding viewed through electron density changes. Torii H; Kimura A; Sakai T Phys Chem Chem Phys; 2022 Aug; 24(30):17951-17955. PubMed ID: 35861167 [TBL] [Abstract][Full Text] [Related]
50. NMR Quantification of Halogen-Bonding Ability To Evaluate Catalyst Activity. Chang YP; Tang T; Jagannathan JR; Hirbawi N; Sun S; Brown J; Franz AK Org Lett; 2020 Aug; 22(16):6647-6652. PubMed ID: 32806211 [TBL] [Abstract][Full Text] [Related]
51. Chiral phosphoric acid-catalyzed enantioselective aza-Friedel-Crafts reaction of naphthols and electron-rich phenols with 2-aryl-3 Ma T; He Y; Qiao XX; Zou CP; Wu XX; Li G; Zhao XJ Org Biomol Chem; 2023 Jan; 21(3):489-493. PubMed ID: 36541043 [TBL] [Abstract][Full Text] [Related]
52. Halogen Bond-Assisted Electron-Catalyzed Atom Economic Iodination of Heteroarenes at Room Temperature. Kazi I; Guha S; Sekar G J Org Chem; 2019 Jun; 84(11):6642-6654. PubMed ID: 31042042 [TBL] [Abstract][Full Text] [Related]
53. Intrinsic bond strength index as a halogen bond interaction energy predictor. Šivickytė O; Costa PJ Phys Chem Chem Phys; 2023 Jul; 25(26):17535-17546. PubMed ID: 37358600 [TBL] [Abstract][Full Text] [Related]
54. Chiral Heterogeneous Scandium Lewis Acid Catalysts for Continuous-Flow Enantioselective Friedel-Crafts Carbon-Carbon Bond-Forming Reactions. Saito Y; Kobayashi S Angew Chem Int Ed Engl; 2021 Dec; 60(51):26566-26570. PubMed ID: 34661969 [TBL] [Abstract][Full Text] [Related]
55. Role of Charge Transfer in Halogen Bonding. Inscoe B; Rathnayake H; Mo Y J Phys Chem A; 2021 Apr; 125(14):2944-2953. PubMed ID: 33797922 [TBL] [Abstract][Full Text] [Related]
56. Trinuclear Lanthanide Coordination Clusters: Single-Molecule-Magnet Behavior and Catalytic Activity in the Friedel-Crafts Alkylation Reaction. Sarkar A; Gómez-García CJ; Benmansour S; Nayek HP Chempluschem; 2019 Jul; 84(7):974-980. PubMed ID: 31943977 [TBL] [Abstract][Full Text] [Related]
57. Theoretical description of halogen bonding - an insight based on the natural orbitals for chemical valence combined with the extended-transition-state method (ETS-NOCV). Mitoraj MP; Michalak A J Mol Model; 2013 Nov; 19(11):4681-8. PubMed ID: 22669533 [TBL] [Abstract][Full Text] [Related]
58. Potential Utilization of Metal-Organic Frameworks in Heterogeneous Catalysis: A Case Study of Hydrogen-Bond Donating and Single-Site Catalysis. Rao PC; Mandal S Chem Asian J; 2019 Dec; 14(23):4087-4102. PubMed ID: 31591812 [TBL] [Abstract][Full Text] [Related]
59. Functional Porphyrinic Metal-Organic Framework as a New Class of Heterogeneous Halogen-Bond-Donor Catalyst. Zhang W; Nafady A; Shan C; Wojtas L; Chen YS; Cheng Q; Zhang XP; Ma S Angew Chem Int Ed Engl; 2021 Nov; 60(45):24312-24317. PubMed ID: 34496141 [TBL] [Abstract][Full Text] [Related]
60. The Influence of Secondary Interactions on the [N-I-N] Lindblad S; Boróka Németh F; Földes T; von der Heiden D; Vang HG; Driscoll ZL; Gonnering ER; Pápai I; Bowling N; Erdelyi M Chemistry; 2021 Oct; 27(55):13748-13756. PubMed ID: 34339075 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]