These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 37527348)
1. A standing Leidenfrost drop with Sufi whirling. Yang J; Li Y; Wang D; Fan Y; Ma Y; Yu F; Guo J; Chen L; Wang Z; Deng X Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2305567120. PubMed ID: 37527348 [TBL] [Abstract][Full Text] [Related]
2. Tailoring vapor film beneath a Leidenfrost drop. Li A; Li H; Lyu S; Zhao Z; Xue L; Li Z; Li K; Li M; Sun C; Song Y Nat Commun; 2023 May; 14(1):2646. PubMed ID: 37156802 [TBL] [Abstract][Full Text] [Related]
3. Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures. Shahriari A; Wurz J; Bahadur V Langmuir; 2014 Oct; 30(40):12074-81. PubMed ID: 25225852 [TBL] [Abstract][Full Text] [Related]
4. On explosive boiling of a multicomponent Leidenfrost drop. Lyu S; Tan H; Wakata Y; Yang X; Law CK; Lohse D; Sun C Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33419924 [TBL] [Abstract][Full Text] [Related]
6. Theoretical model of the Leidenfrost temperature. Gavrilyuk S; Gouin H Phys Rev E; 2022 Nov; 106(5-2):055102. PubMed ID: 36559441 [TBL] [Abstract][Full Text] [Related]
7. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets. Ok JT; Choi J; Brown E; Park S Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527 [TBL] [Abstract][Full Text] [Related]
11. From Bouncing to Floating: The Leidenfrost Effect with Hydrogel Spheres. Waitukaitis S; Harth K; van Hecke M Phys Rev Lett; 2018 Jul; 121(4):048001. PubMed ID: 30095937 [TBL] [Abstract][Full Text] [Related]
12. Geometry of the vapor layer under a leidenfrost drop. Burton JC; Sharpe AL; van der Veen RC; Franco A; Nagel SR Phys Rev Lett; 2012 Aug; 109(7):074301. PubMed ID: 23006372 [TBL] [Abstract][Full Text] [Related]
13. How ambient conditions affect the Leidenfrost temperature. van Limbeek MAJ; Ramírez-Soto O; Prosperetti A; Lohse D Soft Matter; 2021 Mar; 17(11):3207-3215. PubMed ID: 33623939 [TBL] [Abstract][Full Text] [Related]
14. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
15. High jump of impinged droplets before Leidenfrost state. Qiu L; Dubey S; Choo FH; Duan F Phys Rev E; 2019 Mar; 99(3-1):033106. PubMed ID: 30999492 [TBL] [Abstract][Full Text] [Related]
16. Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen. Adda-Bedia M; Kumar S; Lechenault F; Moulinet S; Schillaci M; Vella D Langmuir; 2016 May; 32(17):4179-88. PubMed ID: 27054550 [TBL] [Abstract][Full Text] [Related]
17. Effect of surface topography and wettability on the Leidenfrost effect. Zhong L; Guo Z Nanoscale; 2017 May; 9(19):6219-6236. PubMed ID: 28470271 [TBL] [Abstract][Full Text] [Related]
18. The thermo-wetting instability driving Leidenfrost film collapse. Zhao TY; Patankar NA Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13321-13328. PubMed ID: 32461357 [TBL] [Abstract][Full Text] [Related]
19. Drop impact on superheated surfaces. Tran T; Staat HJ; Prosperetti A; Sun C; Lohse D Phys Rev Lett; 2012 Jan; 108(3):036101. PubMed ID: 22400761 [TBL] [Abstract][Full Text] [Related]
20. Final fate of a Leidenfrost droplet: Explosion or takeoff. Lyu S; Mathai V; Wang Y; Sobac B; Colinet P; Lohse D; Sun C Sci Adv; 2019 May; 5(5):eaav8081. PubMed ID: 31058224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]