BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37527573)

  • 1. The effect of cations and epigallocatechin gallate on in vitro salivary lubrication.
    Agorastos G; van Uitert E; van Halsema E; Scholten E; Bast A; Klosse P
    Food Chem; 2024 Jan; 430():136968. PubMed ID: 37527573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural modifications of the salivary conditioning film upon exposure to sodium bicarbonate: implications for oral lubrication and mouthfeel.
    Ash A; Wilde PJ; Bradshaw DJ; King SP; Pratten JR
    Soft Matter; 2016 Mar; 12(10):2794-801. PubMed ID: 26883483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interactions of epigallocatechin-3-gallate with human whole saliva and parotid saliva.
    Yao JW; Lin CJ; Chen GY; Lin F; Tao T
    Arch Oral Biol; 2010 Jul; 55(7):470-8. PubMed ID: 20593553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of alcohol stimulation on salivary pellicle formation on human tooth enamel surface and its lubricating performance.
    Zeng Q; Zheng L; Zhou J; Xiao H; Zheng J; Zhou Z
    J Mech Behav Biomed Mater; 2017 Nov; 75():567-573. PubMed ID: 28858666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human saliva and model saliva at bulk to adsorbed phases - similarities and differences.
    Sarkar A; Xu F; Lee S
    Adv Colloid Interface Sci; 2019 Nov; 273():102034. PubMed ID: 31518820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A predictive model for astringency based on in vitro interactions between salivary proteins and (-)-Epigallocatechin gallate.
    Ye QQ; Chen GS; Pan W; Cao QQ; Zeng L; Yin JF; Xu YQ
    Food Chem; 2021 Mar; 340():127845. PubMed ID: 32889218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lubrication behavior of ex-vivo salivary pellicle influenced by tannins, gallic acid and mannoproteins.
    Agorastos G; van Nielen O; van Halsema E; Scholten E; Bast A; Klosse P
    Heliyon; 2022 Dec; 8(12):e12347. PubMed ID: 36582694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium release-mediated adsorption and lubrication of salivary proteins on resin-based dental composites.
    Tang Y; Lei L; Yang D; Zheng J; Zeng Q; Xiao H; Zhou Z
    J Mech Behav Biomed Mater; 2022 Nov; 135():105437. PubMed ID: 36095850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reorganisation of the salivary mucin network by dietary components: insights from green tea polyphenols.
    Davies HS; Pudney PD; Georgiades P; Waigh TA; Hodson NW; Ridley CE; Blanch EW; Thornton DJ
    PLoS One; 2014; 9(9):e108372. PubMed ID: 25264771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of calcium ions on the adsorption and lubrication behavior of salivary proteins on human tooth enamel surface.
    Zeng Q; Zheng J; Yang D; Tang Y; Zhou Z
    J Mech Behav Biomed Mater; 2019 Oct; 98():172-178. PubMed ID: 31238209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraoral lubrication of PRP-1, statherin and mucin as studied by AFM.
    Hahn Berg IC; Lindh L; Arnebrant T
    Biofouling; 2004 Feb; 20(1):65-70. PubMed ID: 15079894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of oral astringent stimuli on surface charge and morphology of the protein-rich pellicle at the tooth-saliva interphase.
    Zimmermann R; Delius J; Friedrichs J; Stehl S; Hofmann T; Hannig C; Rehage M; Werner C; Hannig M
    Colloids Surf B Biointerfaces; 2019 Feb; 174():451-458. PubMed ID: 30497006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The green tea polyphenol (-)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health.
    Hara K; Ohara M; Hayashi I; Hino T; Nishimura R; Iwasaki Y; Ogawa T; Ohyama Y; Sugiyama M; Amano H
    Eur J Oral Sci; 2012 Apr; 120(2):132-9. PubMed ID: 22409219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated exposure to epigallocatechin gallate solution or water alters bitterness intensity and salivary protein profile.
    Davis LA; Running CA
    Physiol Behav; 2021 Dec; 242():113624. PubMed ID: 34655570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Next Generation Salivary Lubrication Enhancer Derived from Recombinant Supercharged Polypeptides for Xerostomia.
    Wan H; Ma C; Vinke J; Vissink A; Herrmann A; Sharma PK
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34524-34535. PubMed ID: 32463670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lubrication and load-bearing properties of human salivary pellicles adsorbed ex vivo on molecularly smooth substrata.
    Harvey NM; Yakubov GE; Stokes JR; Klein J
    Biofouling; 2012; 28(8):843-56. PubMed ID: 22881290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lubricating properties of the initial salivary pellicle--an AFM study.
    Berg IC; Rutland MW; Arnebrant T
    Biofouling; 2003 Dec; 19(6):365-9. PubMed ID: 14768465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry mouth: saliva substitutes which adsorb and modify existing salivary condition films improve oral lubrication.
    Vinke J; Kaper HJ; Vissink A; Sharma PK
    Clin Oral Investig; 2020 Nov; 24(11):4019-4030. PubMed ID: 32303864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lubrication.
    Yakubov GE
    Monogr Oral Sci; 2014; 24():71-87. PubMed ID: 24862596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging-related changes in quantity and quality of saliva: Where do we stand in our understanding?
    Xu F; Laguna L; Sarkar A
    J Texture Stud; 2019 Feb; 50(1):27-35. PubMed ID: 30091142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.