These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37527579)
1. Novel colorimetric detection of oxytetracycline in foods by copper nanozyme. Wu C; Li J; Song J; Guo H; Bai S; Lu C; Peng H; Wang X Food Chem; 2024 Jan; 430():137040. PubMed ID: 37527579 [TBL] [Abstract][Full Text] [Related]
2. Copper-Guanosine Nanorods (Cu-Guo NRs) as a Laccase Mimicking Nanozyme for Colorimetric Detection of Rutin. Davoodi-Rad K; Shokrollahi A; Shahdost-Fard F; Azadkish K Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979586 [TBL] [Abstract][Full Text] [Related]
3. 2-Methylbenzimidazole-copper nanozyme with high laccase activity for colorimetric differentiation and detection of aminophenol isomers. Wang Y; Li M; Qu L; Yu L; Li Z Talanta; 2024 Nov; 279():126630. PubMed ID: 39098242 [TBL] [Abstract][Full Text] [Related]
4. A colorimetric detection of dopamine in urine and serum based on the CeO Yin Q; Wang Y; Yang D; Yang Y; Zhu Y Luminescence; 2024 Feb; 39(2):e4684. PubMed ID: 38332470 [TBL] [Abstract][Full Text] [Related]
5. Tris-Copper Nanozyme as a Novel Laccase Mimic for the Detection and Degradation of Phenolic Compounds. Chai TQ; Wang JL; Chen GY; Chen LX; Yang FQ Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836965 [TBL] [Abstract][Full Text] [Related]
6. A novel colorimetric aptasensor using gold nanoparticle for a highly sensitive and specific detection of oxytetracycline. Kim YS; Kim JH; Kim IA; Lee SJ; Jurng J; Gu MB Biosens Bioelectron; 2010 Dec; 26(4):1644-9. PubMed ID: 20829027 [TBL] [Abstract][Full Text] [Related]
7. Polyoxometalate-based nanozyme with laccase-mimicking activity for kanamycin detection based on colorimetric assay. Lu J; Xu X; Chen J Mikrochim Acta; 2024 Aug; 191(9):544. PubMed ID: 39158765 [TBL] [Abstract][Full Text] [Related]
8. Copper nanoclusters stabilized by D-penicillamine for ultrasensitive and visual detection of oxytetracycline. Wang T; Liu W; Tian S; Tian D Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 290():122286. PubMed ID: 36592593 [TBL] [Abstract][Full Text] [Related]
9. Colorimetric assay of phosphate using a multicopper laccase-like nanozyme. Huang S; Tang X; Yu L; Hong S; Liu J; Xu B; Liu R; Guo Y; Xu L Mikrochim Acta; 2022 Sep; 189(10):378. PubMed ID: 36076043 [TBL] [Abstract][Full Text] [Related]
10. Cu,Ce-containing phosphotungstates as laccase-like nanozyme for colorimetric detection of Cr(VI) and Fe(Ⅲ). Gu Y; Jiao Y; Ruan Y; Yang J; Yang Y Spectrochim Acta A Mol Biomol Spectrosc; 2025 Jan; 324():124948. PubMed ID: 39146630 [TBL] [Abstract][Full Text] [Related]
11. Magnetic-nanobead-based competitive enzyme-linked aptamer assay for the analysis of oxytetracycline in food. Lu C; Tang Z; Liu C; Kang L; Sun F Anal Bioanal Chem; 2015 May; 407(14):4155-63. PubMed ID: 25855149 [TBL] [Abstract][Full Text] [Related]
12. Cu (II)-based metal-organic xerogels as a novel nanozyme for colorimetric detection of dopamine. Guo MX; Li YF Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 207():236-241. PubMed ID: 30245138 [TBL] [Abstract][Full Text] [Related]
13. A novel laccase-like Cu-MOF for colorimetric differentiation and detection of phenolic compounds. Gao Z; Guan J; Wang M; Liu S; Chen K; Liu Q; Chen X Talanta; 2024 May; 272():125840. PubMed ID: 38430865 [TBL] [Abstract][Full Text] [Related]
14. A novel copper-based nanozyme: fabrication and application for colorimetric detection of resveratrol. Li W; Sun J; Xin Y; Han Y; Sun Y; Li A; Wang Z Anal Methods; 2023 Nov; 15(45):6252-6258. PubMed ID: 37955250 [TBL] [Abstract][Full Text] [Related]
15. 2-Methylimidazole-doped nanozymes with enhanced laccase activity for the (+)-catechins detection in dairy products. Li M; Xie Y; Song D; Huang H; Li Y Talanta; 2023 Jan; 252():123853. PubMed ID: 35998448 [TBL] [Abstract][Full Text] [Related]
16. Turn-on colorimetric detection of hydroquinone based on Au/CuO nanocomposite nanozyme. Zhuang Z; Zhang C; Yu Z; Liu W; Zhong Y; Zhang J; Xu Z Mikrochim Acta; 2022 Jul; 189(8):293. PubMed ID: 35881205 [TBL] [Abstract][Full Text] [Related]
17. A smartphone-based colorimetric assay using Cu-tannic acid nanosheets (Cu-TA NShs) as a laccase-mimicking nanozyme for visual detection of quercetin in vegetables. Davoodi-Rad K; Shokrollahi A; Shahdost-Fard F; Azadkish K; Madani-Nejad E Mikrochim Acta; 2024 Feb; 191(3):168. PubMed ID: 38418635 [TBL] [Abstract][Full Text] [Related]
18. A colorimetric aptasensor for the antibiotics oxytetracycline and kanamycin based on the use of magnetic beads and gold nanoparticles. Xu Y; Lu C; Sun Y; Shao Y; Cai Y; Zhang Y; Miao J; Miao P Mikrochim Acta; 2018 Nov; 185(12):548. PubMed ID: 30426224 [TBL] [Abstract][Full Text] [Related]
19. Nanozyme based on graphene oxide modified with Fe Song Z; Jiang C; Wang F; Yu L; Ye S; Dramou P; He H Mikrochim Acta; 2021 May; 188(6):207. PubMed ID: 34047863 [TBL] [Abstract][Full Text] [Related]
20. Sensitive colorimetric assay for the determination of alkaline phosphatase activity utilizing nanozyme based on copper nanoparticle-modified Prussian blue. Fan S; Jiang X; Yang M; Wang X Anal Bioanal Chem; 2021 Jun; 413(15):3955-3963. PubMed ID: 33885935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]