These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37528396)

  • 1. Prediction and optimization of indirect shoot regeneration of Passiflora caerulea using machine learning and optimization algorithms.
    Jafari M; Daneshvar MH
    BMC Biotechnol; 2023 Aug; 23(1):27. PubMed ID: 37528396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-mediated Passiflora caerulea callogenesis optimization.
    Jafari M; Daneshvar MH
    PLoS One; 2024; 19(1):e0292359. PubMed ID: 38266002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient plant regeneration and callus induction from nodal and hypocotyl explants of goji berry (Lycium barbarum L.) and comparison of phenolic profiles in calli formed under different combinations of plant growth regulators.
    Karakas FP
    Plant Physiol Biochem; 2020 Jan; 146():384-391. PubMed ID: 31790925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass propagation through direct and indirect organogenesis in three species of genus Zephyranthes and ploidy assessment of regenerants through flow cytometry.
    Syeed R; Mujib A; Malik MQ; Mamgain J; Ejaz B; Gulzar B; Zafar N
    Mol Biol Rep; 2021 Jan; 48(1):513-526. PubMed ID: 33442831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing petunia tissue culture efficiency with machine learning: A pathway to improved callogenesis.
    Rezaei H; Mirzaie-Asl A; Abdollahi MR; Tohidfar M
    PLoS One; 2023; 18(11):e0293754. PubMed ID: 37922261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro regeneration of Ugandan passion fruit cultivars from leaf discs.
    Tuhaise S; Nakavuma JL; Adriko J; Ssekatawa K; Kiggundu A
    BMC Res Notes; 2019 Jul; 12(1):425. PubMed ID: 31311592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and optimizing in vitro percentage and speed callus induction of carrot via Multilayer Perceptron-Single point discrete GA and radial basis function.
    Fallah Ziarani M; Tohidfar M; Navvabi M
    BMC Biotechnol; 2022 Nov; 22(1):34. PubMed ID: 36335321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo in vitro shoot morphogenesis from shoot tip-induced callus cultures of Gymnema sylvestre (Retz.) R.Br. ex Sm.
    Isah T
    Biol Res; 2019 Jan; 52(1):3. PubMed ID: 30660192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro regeneration of triploid from mature endosperm culture of Passiflora edulis "Mantianxing".
    Tang J; Luo X; Zhu Y; Cai N; Chen L; Chen S; Xu Y
    Biosci Biotechnol Biochem; 2024 Mar; 88(4):412-419. PubMed ID: 38412471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect shoot organogenesis from leaf explants of Adhatoda vasica Nees.
    Mandal J; Laxminarayana U
    Springerplus; 2014; 3():648. PubMed ID: 25485191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant regeneration via somatic embryogenesis and shoot organogenesis from immature cotyledons of Camellia nitidissima Chi.
    Lü J; Chen R; Zhang M; da Silva JA; Ma G
    J Plant Physiol; 2013 Sep; 170(13):1202-11. PubMed ID: 23790533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome size and gas chromatography-mass spectrometry (GC-MS) analysis of field-grown and in vitro regenerated Pluchea lanceolata plants.
    Mamgain J; Mujib A; Syeed R; Ejaz B; Malik MQ; Bansal Y
    J Appl Genet; 2023 Feb; 64(1):1-21. PubMed ID: 36175751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell dedifferentiation and multiplication of Burdock (Arctium Lappa) as a medicinal plant.
    Zebarjadi A; Kazem S; Kahrizi D
    Cell Mol Biol (Noisy-le-grand); 2018 May; 64(7):92-96. PubMed ID: 29974852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined direct regeneration protocols in tissue culture of different cumin genotypes based on pre-existing meristems.
    Ebrahimie E; Hosseinzadeh A; Nagavi MR; Ghannadha MR; Mohammadie-Dehcheshmeh M
    Pak J Biol Sci; 2007 May; 10(9):1360-70. PubMed ID: 19069945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors Influencing
    Kazeroonian R; Mousavi A; Jari SK; Tohidfar M
    Iran J Biotechnol; 2018 May; 16(2):e1454. PubMed ID: 30805383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and optimizing callus growth and development in Cannabis sativa using random forest and support vector machine in combination with a genetic algorithm.
    Hesami M; Jones AMP
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):5201-5212. PubMed ID: 34086118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and reproducible somatic embryogenesis and micropropagation in tomato via novel structures - Rhizoid Tubers.
    Saeed W; Naseem S; Gohar D; Ali Z
    PLoS One; 2019; 14(5):e0215929. PubMed ID: 31116740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovation in the Breeding of Common Bean Through a Combined Approach of
    Aasim M; Katirci R; Baloch FS; Mustafa Z; Bakhsh A; Nadeem MA; Ali SA; Hatipoğlu R; Çiftçi V; Habyarimana E; Karaköy T; Chung YS
    Front Genet; 2022; 13():897696. PubMed ID: 36092939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adventitious shoot regeneration from leaf explant of dwarf hygro (Hygrophila polysperma (Roxb.) T. Anderson).
    Karataş M; Aasim M; Çınar A; Dogan M
    ScientificWorldJournal; 2013; 2013():680425. PubMed ID: 23853539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of Genetically Stable Plants from in Vitro Vitrified Leaves of Different Carnation Cultivars.
    Thu HTM; Naing AH; Jeong HY; Kim CK
    Plants (Basel); 2020 Jul; 9(8):. PubMed ID: 32731438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.