These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37528506)

  • 1. Tuneable Anisotropic Plasmonics with Shape-Symmetric Conducting Polymer Nanoantennas.
    Duan Y; Rahmanudin A; Chen S; Kim N; Mohammadi M; Tybrandt K; Jonsson MP
    Adv Mater; 2023 Dec; 35(51):e2303949. PubMed ID: 37528506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductive polymer nanoantennas for dynamic organic plasmonics.
    Chen S; Kang ESH; Shiran Chaharsoughi M; Stanishev V; Kühne P; Sun H; Wang C; Fahlman M; Fabiano S; Darakchieva V; Jonsson MP
    Nat Nanotechnol; 2020 Jan; 15(1):35-40. PubMed ID: 31819242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas.
    Karki A; Cincotti G; Chen S; Stanishev V; Darakchieva V; Wang C; Fahlman M; Jonsson MP
    Adv Mater; 2022 Apr; 34(13):e2107172. PubMed ID: 35064601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic Anisotropic Excitonic Optical Nanoantennas.
    Kang ESH; Kk S; Jeon I; Kim J; Chen S; Kim KH; Kim KH; Lee HS; Westerlund F; Jonsson MP
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201907. PubMed ID: 35619287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically Tunable All-PCM Visible Plasmonics.
    Sreekanth KV; Medwal R; Das CM; Gupta M; Mishra M; Yong KT; Rawat RS; Singh R
    Nano Lett; 2021 May; 21(9):4044-4050. PubMed ID: 33900781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically switchable metallic polymer nanoantennas.
    Karst J; Floess M; Ubl M; Dingler C; Malacrida C; Steinle T; Ludwigs S; Hentschel M; Giessen H
    Science; 2021 Oct; 374(6567):612-616. PubMed ID: 34709910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the Near-Field of Second-Harmonic Light around Plasmonic Nanoantennas.
    Metzger B; Hentschel M; Giessen H
    Nano Lett; 2017 Mar; 17(3):1931-1937. PubMed ID: 28182426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas.
    Martin J; Kociak M; Mahfoud Z; Proust J; Gérard D; Plain J
    Nano Lett; 2014 Oct; 14(10):5517-23. PubMed ID: 25207386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin-Dependent Emission from Arrays of Planar Chiral Nanoantennas Due to Lattice and Localized Plasmon Resonances.
    Cotrufo M; Osorio CI; Koenderink AF
    ACS Nano; 2016 Mar; 10(3):3389-97. PubMed ID: 26854880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces.
    Chen W; Tymchenko M; Gopalan P; Ye X; Wu Y; Zhang M; Murray CB; Alu A; Kagan CR
    Nano Lett; 2015 Aug; 15(8):5254-60. PubMed ID: 26161503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-polarization control of in-plane scattering in arrays of asymmetric U-shaped nanoantennas.
    Sadeghi SM; Roberts DT; Gutha RR
    Nanotechnology; 2023 Jul; 34(41):. PubMed ID: 37442107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic Plasmonic CuS Nanocrystals as a Natural Electronic Material with Hyperbolic Optical Dispersion.
    Córdova-Castro RM; Casavola M; van Schilfgaarde M; Krasavin AV; Green MA; Richards D; Zayats AV
    ACS Nano; 2019 Jun; 13(6):6550-6560. PubMed ID: 31117375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Nanoplasmonic Photodetectors.
    Pertsch P; Kullock R; Gabriel V; Zurak L; Emmerling M; Hecht B
    Nano Lett; 2022 Sep; 22(17):6982-6987. PubMed ID: 35998329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Plasmon Resonances and Symmetry Effects on Second Harmonic Generation in WS
    Spreyer F; Ruppert C; Georgi P; Zentgraf T
    ACS Nano; 2021 Oct; 15(10):16719-16728. PubMed ID: 34606724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering.
    Song J; Zhou W
    Nano Lett; 2018 Jul; 18(7):4409-4416. PubMed ID: 29923727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic Nanoantenna-Based Magnetoplasmonic Crystals for Highly Enhanced and Tunable Magneto-Optical Activity.
    Maccaferri N; Bergamini L; Pancaldi M; Schmidt MK; Kataja M; Dijken Sv; Zabala N; Aizpurua J; Vavassori P
    Nano Lett; 2016 Apr; 16(4):2533-42. PubMed ID: 26967047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode.
    Gili VF; Ghirardini L; Rocco D; Marino G; Favero I; Roland I; Pellegrini G; Duò L; Finazzi M; Carletti L; Locatelli A; Lemaître A; Neshev D; De Angelis C; Leo G; Celebrano M
    Beilstein J Nanotechnol; 2018; 9():2306-2314. PubMed ID: 30202699
    [No Abstract]   [Full Text] [Related]  

  • 18. Surpassing Single Line Width Active Tuning with Photochromic Molecules Coupled to Plasmonic Nanoantennas.
    Wilson WM; Stewart JW; Mikkelsen MH
    Nano Lett; 2018 Feb; 18(2):853-858. PubMed ID: 29284087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically Active Plasmonic Metasurfaces based on the Hybridization of In-Plane Coupling and Out-of-Plane Coupling.
    Wu D; Yang L; Liu C; Xu Z; Liu Y; Yu Z; Yu L; Chen L; Ma R; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):144. PubMed ID: 29748920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Loss Plasmonic Dielectric Nanoresonators.
    Yang Y; Miller OD; Christensen T; Joannopoulos JD; Soljačić M
    Nano Lett; 2017 May; 17(5):3238-3245. PubMed ID: 28441499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.