These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37528622)

  • 21. DNA-engineered chiroplasmonic heteropyramids for ultrasensitive detection of mercury ion.
    Yan W; Wang Y; Zhuang H; Zhang J
    Biosens Bioelectron; 2015 Jun; 68():516-520. PubMed ID: 25636024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanohelix-Induced Optical Activity of Liquid Metal Nanoparticles.
    Yang L; Ma Y; Lin C; Qu G; Bai X; Huang Z
    Small; 2022 Apr; 18(17):e2200620. PubMed ID: 35319827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmonic Chirality and Circular Dichroism in Bioassembled and Nonbiological Systems: Theoretical Background and Recent Progress.
    Kong XT; Besteiro LV; Wang Z; Govorov AO
    Adv Mater; 2020 Oct; 32(41):e1801790. PubMed ID: 30260543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unraveling the Complex Chirality Evolution in DNA-Assembled High-Order, Hybrid Chiroplasmonic Superstructures from Multi-Scale Chirality Mechanisms.
    Yuan Y; Li H; Yang H; Han C; Hu H; Govorov AO; Yan H; Lan X
    Angew Chem Int Ed Engl; 2022 Nov; 61(44):e202210730. PubMed ID: 36083592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Universal Scaling and Design Rules of Hydrogen-Induced Optical Properties in Pd and Pd-Alloy Nanoparticles.
    Nugroho FAA; Darmadi I; Zhdanov VP; Langhammer C
    ACS Nano; 2018 Oct; 12(10):9903-9912. PubMed ID: 30157370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen-Induced Aggregation of Au@Pd Nanoparticles for Eye-Readable Plasmonic Hydrogen Sensors.
    Li C; Zhu H; Guo Y; Ye S; Wang T; Fu Y; Zhang X
    ACS Sens; 2022 Sep; 7(9):2778-2787. PubMed ID: 36073785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioinspired Toolkit Based on Intermolecular Encoder toward Evolutionary 4D Chiral Plasmonic Materials.
    Ahn HY; Yoo S; Cho NH; Kim RM; Kim H; Huh JH; Lee S; Nam KT
    Acc Chem Res; 2019 Oct; 52(10):2768-2783. PubMed ID: 31536328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanophotonic Approaches for Chirality Sensing.
    Warning LA; Miandashti AR; McCarthy LA; Zhang Q; Landes CF; Link S
    ACS Nano; 2021 Oct; 15(10):15538-15566. PubMed ID: 34609836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking.
    Chen Y; Gao J; Yang X
    Nano Lett; 2018 Jan; 18(1):520-527. PubMed ID: 29206469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material.
    Sugawa K; Tahara H; Yamashita A; Otsuki J; Sagara T; Harumoto T; Yanagida S
    ACS Nano; 2015 Feb; 9(2):1895-904. PubMed ID: 25629586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles.
    Lee HE; Kim RM; Ahn HY; Lee YY; Byun GH; Im SW; Mun J; Rho J; Nam KT
    Nat Commun; 2020 Jan; 11(1):263. PubMed ID: 31937767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmonic metamaterials for chiral sensing applications.
    Lee YY; Kim RM; Im SW; Balamurugan M; Nam KT
    Nanoscale; 2020 Jan; 12(1):58-66. PubMed ID: 31815994
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chiral graphene plasmonic Archimedes' spiral nanostructure with tunable circular dichroism and enhanced sensing performance.
    Zhou H; Su S; Ma H; Zhao Z; Lin Z; Qiu W; Qiu P; Huang B; Kan Q
    Opt Express; 2020 Oct; 28(21):31954-31966. PubMed ID: 33115159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers.
    Kong XT; Khosravi Khorashad L; Wang Z; Govorov AO
    Nano Lett; 2018 Mar; 18(3):2001-2008. PubMed ID: 29420903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response.
    Slyngborg M; Tsao YC; Fojan P
    Beilstein J Nanotechnol; 2016; 7():914-25. PubMed ID: 27547608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Efficient Anisotropic Chiral Plasmonic Metamaterials for Polarization Conversion and Detection.
    Bai J; Yao Y
    ACS Nano; 2021 Sep; 15(9):14263-14274. PubMed ID: 34383483
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Laser-Induced Chirality of Plasmonic Nanoparticles Embedded in Porous Matrix.
    Sapunova AA; Yandybaeva YI; Zakoldaev RA; Afanasjeva AV; Andreeva OV; Gladskikh IA; Vartanyan TA; Dadadzhanov DR
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Performance Ultrathin Active Chiral Metamaterials.
    Wu Z; Chen X; Wang M; Dong J; Zheng Y
    ACS Nano; 2018 May; 12(5):5030-5041. PubMed ID: 29708728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface Lattice Resonances in 3D Chiral Metacrystals for Plasmonic Sensing.
    Manoccio M; Tasco V; Todisco F; Passaseo A; Cuscuna M; Tarantini I; Gigli G; Esposito M
    Adv Sci (Weinh); 2023 Feb; 10(6):e2206930. PubMed ID: 36575146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chiral Plasmonic Metamaterials with Tunable Chirality.
    Guan Y; Wang Z; Ai B; Chen C; Zhang W; Wang Y; Zhang G
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50192-50202. PubMed ID: 33090757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.