These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37528673)

  • 1. Research on AGV path tracking method based on global vision and reinforcement learning.
    Zhu Q; Zheng Z; Wang C; Lu Y
    Sci Prog; 2023; 106(3):368504231188854. PubMed ID: 37528673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on AGV trackless guidance technology based on the global vision.
    Zheng Z; Lu Y
    Sci Prog; 2022; 105(3):368504221103766. PubMed ID: 35775591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global Dynamic Path Planning of AGV Based on Fusion of Improved A* Algorithm and Dynamic Window Method.
    Wang T; Li A; Guo D; Du G; He W
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research and experiment on global path planning for indoor AGV via improved ACO and fuzzy DWA.
    Zhou Z; Geng C; Qi B; Meng A; Xiao J
    Math Biosci Eng; 2023 Oct; 20(11):19152-19173. PubMed ID: 38052594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Path Planning of AGV Based on Kinematical Constraint A* Algorithm and Following DWA Fusion Algorithms.
    Yin X; Cai P; Zhao K; Zhang Y; Zhou Q; Yao D
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-AGV dispatching and routing problem based on a three-stage decomposition method.
    Hu YJ; Dong LC; Xu L
    Math Biosci Eng; 2020 Jul; 17(5):5150-5172. PubMed ID: 33120546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy benchmark for energy-efficient path planning of the automated guided vehicle.
    Hu L; Zhao X; Liu W; Cai W; Xu K; Zhang Z
    Sci Total Environ; 2023 Jan; 857(Pt 3):159613. PubMed ID: 36273562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Qualitative Analysis of a USB Camera for AGV Control.
    Puppim de Oliveira D; Pereira Neves Dos Reis W; Morandin Junior O
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Path Planning for Forklift AGV Based on Smoothing A* and Improved DWA Hybrid Algorithm.
    Wu B; Chi X; Zhao C; Zhang W; Lu Y; Jiang D
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intelligent Land-Vehicle Model Transfer Trajectory Planning Method Based on Deep Reinforcement Learning.
    Yu L; Shao X; Wei Y; Zhou K
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30200499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiobjective path optimization of an indoor AGV based on an improved ACO-DWA.
    Xiao J; Yu X; Sun K; Zhou Z; Zhou G
    Math Biosci Eng; 2022 Aug; 19(12):12532-12557. PubMed ID: 36654010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Self-Attention-Based Deep Reinforcement Learning Approach for AGV Dispatching Systems.
    Wei Q; Yan Y; Zhang J; Xiao J; Wang C
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):7911-7922. PubMed ID: 36449577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on Path Planning and Path Tracking Control of Autonomous Vehicles Based on Improved APF and SMC.
    Zhang Y; Liu K; Gao F; Zhao F
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Workshop AGV path planning based on improved A* algorithm.
    Liu N; Ma C; Hu Z; Guo P; Ge Y; Tian M
    Math Biosci Eng; 2024 Jan; 21(2):2137-2162. PubMed ID: 38454677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement Learning-Based End-to-End Parking for Automatic Parking System.
    Zhang P; Xiong L; Yu Z; Fang P; Yan S; Yao J; Zhou Y
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-AGV path planning with double-path constraints by using an improved genetic algorithm.
    Han Z; Wang D; Liu F; Zhao Z
    PLoS One; 2017; 12(7):e0181747. PubMed ID: 28746355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Energy-Efficient Routing of Multiple AGVs with Multi-Agent Reinforcement Learning.
    Ye X; Deng Z; Shi Y; Shen W
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Improved Timed Elastic Band (TEB) Algorithm of Autonomous Ground Vehicle (AGV) in Complex Environment.
    Wu J; Ma X; Peng T; Wang H
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Dual-Layer Weight-Leader-Vicsek Model for Multi-AGV Path Planning in Warehouse.
    Lin S; Liu A; Wang J
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy-efficient path planning for a multi-load automated guided vehicle executing multiple transport tasks in a manufacturing workshop environment.
    Zhang Z; Wu L; Zhang B; Jia S; Liu W; Peng T
    Environ Sci Pollut Res Int; 2024 Mar; ():. PubMed ID: 38483719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.