BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37528933)

  • 41. Hyper-cross-linked polymer supported rhodium: an effective catalyst for hydrogen evolution from ammonia borane.
    Xu C; Hu M; Wang Q; Fan G; Wang Y; Zhang Y; Gao D; Bi J
    Dalton Trans; 2018 Feb; 47(8):2561-2567. PubMed ID: 29384536
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cu(OH)
    Peng CY; Hou CC; Chen QQ; Wang CJ; Lv XJ; Zhong J; Fu WF; Che CM; Chen Y
    Sci Bull (Beijing); 2018 Dec; 63(23):1583-1590. PubMed ID: 36751080
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In situ XAFS and NMR study of rhodium-catalyzed dehydrogenation of dimethylamine borane.
    Chen Y; Fulton JL; Linehan JC; Autrey T
    J Am Chem Soc; 2005 Mar; 127(10):3254-5. PubMed ID: 15755123
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly efficient polymer supported monodisperse ruthenium-nickel nanocomposites for dehydrocoupling of dimethylamine borane.
    Sen B; Kuyuldar E; Demirkan B; Onal Okyay T; Şavk A; Sen F
    J Colloid Interface Sci; 2018 Sep; 526():480-486. PubMed ID: 29772415
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Novel N-Doped Nanoporous Bio-Graphene Synthesized from
    Afsharpour M; Elyasi M; Javadian H
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770977
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Size-Dependent Catalytic Activity of Monodispersed Nickel Nanoparticles for the Hydrolytic Dehydrogenation of Ammonia Borane.
    Guo K; Li H; Yu Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):517-525. PubMed ID: 29243479
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Methanol Synthesis and Decomposition Reactions Catalyzed by a Model Catalyst Developed from Bis(1,5-diphenyl-1,3,5-pentanetrionato)dicopper(II)/Silica.
    Ranaweera SA; Henry WP; White MG
    ACS Omega; 2017 Sep; 2(9):5949-5961. PubMed ID: 31457849
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanozirconia supported ruthenium(0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane.
    Tonbul Y; Akbayrak S; Özkar S
    J Colloid Interface Sci; 2018 Mar; 513():287-294. PubMed ID: 29156236
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative pulmonary toxicity assessment of tungsten trioxide and tungsten trioxide hydrate nanoparticles.
    Yu HH; Chen YC; Su HP; Chen L; Chen HH; Lin KA; Lin CH
    Sci Total Environ; 2023 Jan; 855():158885. PubMed ID: 36169020
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leveraging Cu/CuFe
    Koley P; Chandra Shit S; Joseph B; Pollastri S; Sabri YM; Mayes ELH; Nakka L; Tardio J; Mondal J
    ACS Appl Mater Interfaces; 2020 May; 12(19):21682-21700. PubMed ID: 32314915
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst.
    Tong H; Jiang Y; Zhang Q; Li J; Jiang W; Zhang D; Li N; Xia L
    ChemSusChem; 2017 Aug; 10(16):3268-3275. PubMed ID: 28612494
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Copper(0) nanoparticles supported on silica-coated cobalt ferrite magnetic particles: cost effective catalyst in the hydrolysis of ammonia-borane with an exceptional reusability performance.
    Kaya M; Zahmakiran M; Ozkar S; Volkan M
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3866-73. PubMed ID: 22856878
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane.
    Yang L; Luo W; Cheng G
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8231-40. PubMed ID: 23927435
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Monodisperse palladium-cobalt alloy nanocatalyst supported on activated carbon (AC) as highly effective catalyst for the DMAB dehydrocoupling.
    Sen B; Acidereli H; Karaman N; Sen F
    Sci Rep; 2020 Jul; 10(1):11755. PubMed ID: 32678254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation of heterojunction C
    Wang X; Zhu Z; Jiang J; Li R; Xiong J
    Chemosphere; 2023 Oct; 337():139206. PubMed ID: 37315863
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cux Co1-x O Nanoparticles on Graphene Oxide as A Synergistic Catalyst for High-Efficiency Hydrolysis of Ammonia-Borane.
    Feng K; Zhong J; Zhao B; Zhang H; Xu L; Sun X; Lee ST
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11950-4. PubMed ID: 27532345
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Complete Dehydrogenation of Hydrazine Borane on Manganese Oxide Nanorod-Supported Ni@Ir Core-Shell Nanoparticles.
    Yurderi M; Top T; Bulut A; Kanberoglu GS; Kaya M; Zahmakiran M
    Inorg Chem; 2020 Jul; 59(14):9728-9738. PubMed ID: 32589025
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amine-functionalized MIL-53(Al) with embedded ruthenium nanoparticles as a highly efficient catalyst for the hydrolytic dehydrogenation of ammonia borane.
    Zhang S; Zhou L; Chen M
    RSC Adv; 2018 Mar; 8(22):12282-12291. PubMed ID: 35539406
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Esterification of used vegetable oils using the heterogeneous WO3/ZrO2 catalyst for production of biodiesel.
    Park YM; Lee JY; Chung SH; Park IS; Lee SY; Kim DK; Lee JS; Lee KY
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S59-61. PubMed ID: 19433351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.