These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 37530398)

  • 1. Machine Learning Diagnosis of Small-Bowel Crohn Disease Using T2-Weighted MRI Radiomic and Clinical Data.
    Liu RX; Li H; Towbin AJ; Ata NA; Smith EA; Tkach JA; Denson LA; He L; Dillman JR
    AJR Am J Roentgenol; 2024 Jan; 222(1):e2329812. PubMed ID: 37530398
    [No Abstract]   [Full Text] [Related]  

  • 2. Machine Learning Prediction of Liver Stiffness Using Clinical and T2-Weighted MRI Radiomic Data.
    He L; Li H; Dudley JA; Maloney TC; Brady SL; Somasundaram E; Trout AT; Dillman JR
    AJR Am J Roentgenol; 2019 Sep; 213(3):592-601. PubMed ID: 31120779
    [No Abstract]   [Full Text] [Related]  

  • 3. MR enterography radiologic ulcers in newly diagnosed ileal Crohn disease in children: frequency, inter-radiologist agreement, and clinical correlation.
    Palmer A; Towbin AJ; Anton CG; Kocaoglu M; Zhang B; Whaley K; Debnath P; Dillman JR
    Pediatr Radiol; 2024 Oct; 54(11):1842-1849. PubMed ID: 39292244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiomics to Detect Inflammation and Fibrosis on Magnetic Resonance Enterography in Stricturing Crohn's Disease.
    Chirra P; Sleiman J; Gandhi NS; Gordon IO; Hariri M; Baker M; Ottichilo R; Bruining DH; Kurowski JA; Viswanath SE; Rieder F
    J Crohns Colitis; 2024 Oct; 18(10):1660-1671. PubMed ID: 38761165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning methods in automated detection of CT enterography findings in Crohn's disease: A feasibility study.
    Wasnik AP; Al-Hawary MM; Enchakalody B; Wang SC; Su GL; Stidham RW
    Clin Imaging; 2024 Sep; 113():110231. PubMed ID: 38964173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Simplified MR Index of Activity Score in Pediatric Small-Bowel Crohn Disease: An Interreader Agreement and Responsiveness Study.
    Dillman JR; Ata NA; Towbin AJ; Anton CG; Smith EA; Zhang B; Imbus R; Tkach JA; Denson LA
    AJR Am J Roentgenol; 2023 Jan; 220(1):126-133. PubMed ID: 35946860
    [No Abstract]   [Full Text] [Related]  

  • 7. Inter-radiologist agreement using Society of Abdominal Radiology-American Gastroenterological Association (SAR-AGA) consensus nomenclature for reporting CT and MR enterography in children and young adults with small bowel Crohn disease.
    Rees MA; Dillman JR; Anton CG; Rattan MS; Smith EA; Towbin AJ; Zhang B; Trout AT
    Abdom Radiol (NY); 2019 Feb; 44(2):391-397. PubMed ID: 30120514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance enterography has good inter-rater agreement and diagnostic accuracy for detecting inflammation in pediatric Crohn disease.
    Church PC; Greer MC; Cytter-Kuint R; Doria AS; Griffiths AM; Turner D; Walters TD; Feldman BM
    Pediatr Radiol; 2017 May; 47(5):565-575. PubMed ID: 28283726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening.
    Bülbül HM; Burakgazi G; Kesimal U; Kaba E
    Jpn J Radiol; 2024 Aug; 42(8):872-879. PubMed ID: 38536559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing the radiomics-machine-learning model based on non-contrast enhanced CT for the simplified risk categorization of thymic epithelial tumors: A large cohort retrospective study.
    Feng XL; Wang SZ; Chen HH; Huang YX; Xin YK; Zhang T; Cheng DL; Mao L; Li XL; Liu CX; Hu YC; Wang W; Cui GB; Nan HY
    Lung Cancer; 2022 Apr; 166():150-160. PubMed ID: 35287067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel multidisciplinary machine learning approach based on clinical, imaging, colonoscopy, and pathology features for distinguishing intestinal tuberculosis from Crohn's disease.
    Lu B; Huang Z; Lin J; Zhang R; Shen X; Huang L; Wang X; He W; Huang Q; Fang J; Mao R; Li Z; Huang B; Feng ST; Ye Z; Zhang J; Wang Y
    Abdom Radiol (NY); 2024 Jul; 49(7):2187-2197. PubMed ID: 38703189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective cohort study of ultrasound-ultrasound and ultrasound-MR enterography agreement in the evaluation of pediatric small bowel Crohn disease.
    Dillman JR; Smith EA; Sanchez R; DiPietro MA; Dehkordy SF; Adler J; DeMatos-Maillard V; Khalatbari S; Davenport MS
    Pediatr Radiol; 2016 Apr; 46(4):490-7. PubMed ID: 26718197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging.
    Peng A; Dai H; Duan H; Chen Y; Huang J; Zhou L; Chen L
    Eur J Radiol; 2020 Apr; 125():108892. PubMed ID: 32087466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor-to-bone distance and radiomic features on MRI distinguish intramuscular lipomas from well-differentiated liposarcomas.
    Sudjai N; Siriwanarangsun P; Lektrakul N; Saiviroonporn P; Maungsomboon S; Phimolsarnti R; Asavamongkolkul A; Chandhanayingyong C
    J Orthop Surg Res; 2023 Mar; 18(1):255. PubMed ID: 36978182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MR enterography grading of pediatric ileocolonic Crohn disease activity based on a single bowel segment.
    Napolitano M; Munari AM; Di Leo G; Panarisi NAR; Zuin G; Fava G; Vecchi M; Sardanelli F; Zuccotti GV
    Radiol Med; 2021 Nov; 126(11):1396-1406. PubMed ID: 34414550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T2-weighted imaging-based radiomic-clinical machine learning model for predicting the differentiation of colorectal adenocarcinoma.
    Zheng HD; Huang QY; Huang QM; Ke XT; Ye K; Lin S; Xu JH
    World J Gastrointest Oncol; 2024 Mar; 16(3):819-832. PubMed ID: 38577440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion-weighted MRI radiomics of spine bone tumors: feature stability and machine learning-based classification performance.
    Gitto S; Bologna M; Corino VDA; Emili I; Albano D; Messina C; Armiraglio E; Parafioriti A; Luzzati A; Mainardi L; Sconfienza LM
    Radiol Med; 2022 May; 127(5):518-525. PubMed ID: 35320464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance enterography compared with ultrasonography in newly diagnosed and relapsing Crohn's disease patients: the METRIC diagnostic accuracy study.
    Taylor SA; Mallett S; Bhatnagar G; Morris S; Quinn L; Tomini F; Miles A; Baldwin-Cleland R; Bloom S; Gupta A; Hamlin PJ; Hart AL; Higginson A; Jacobs I; McCartney S; Murray CD; Plumb AA; Pollok RC; Rodriguez-Justo M; Shabir Z; Slater A; Tolan D; Travis S; Windsor A; Wylie P; Zealley I; Halligan S
    Health Technol Assess; 2019 Aug; 23(42):1-162. PubMed ID: 31432777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiologic-Radiomic Machine Learning Models for Differentiation of Benign and Malignant Solid Renal Masses: Comparison With Expert-Level Radiologists.
    Sun XY; Feng QX; Xu X; Zhang J; Zhu FP; Yang YH; Zhang YD
    AJR Am J Roentgenol; 2020 Jan; 214(1):W44-W54. PubMed ID: 31553660
    [No Abstract]   [Full Text] [Related]  

  • 20. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy.
    Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S
    Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.