BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 37530410)

  • 1. scRNA-sequencing in chick suggests a probabilistic model for cell fate allocation at the neural plate border.
    Thiery AP; Buzzi AL; Hamrud E; Cheshire C; Luscombe NM; Briscoe J; Streit A
    Elife; 2023 Aug; 12():. PubMed ID: 37530410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell atlas of early chick development reveals gradual segregation of neural crest lineage from the neural plate border during neurulation.
    Williams RM; Lukoseviciute M; Sauka-Spengler T; Bronner ME
    Elife; 2022 Jan; 11():. PubMed ID: 35088714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Foxi3 transcription factor is necessary for the fate restriction of placodal lineages at the neural plate border.
    Thawani A; Maunsell HR; Zhang H; Ankamreddy H; Groves AK
    Development; 2023 Oct; 150(19):. PubMed ID: 37756587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells.
    Roellig D; Tan-Cabugao J; Esaian S; Bronner ME
    Elife; 2017 Mar; 6():. PubMed ID: 28355135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of neural plate explants to pre-placodal ectoderm-like tissue in vitro.
    Shigetani Y; Wakamatsu Y; Tachibana T; Okabe M
    Biochem Biophys Res Commun; 2016 Sep; 477(4):807-813. PubMed ID: 27369078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DLX5 positions the neural crest and preplacode region at the border of the neural plate.
    McLarren KW; Litsiou A; Streit A
    Dev Biol; 2003 Jul; 259(1):34-47. PubMed ID: 12812786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border.
    Reichert S; Randall RA; Hill CS
    Development; 2013 Nov; 140(21):4435-44. PubMed ID: 24089471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate Specification of Neural Plate Border by Canonical Wnt Signaling and Grhl3 is Crucial for Neural Tube Closure.
    Kimura-Yoshida C; Mochida K; Ellwanger K; Niehrs C; Matsuo I
    EBioMedicine; 2015 Jun; 2(6):513-27. PubMed ID: 26288816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Setting appropriate boundaries: fate, patterning and competence at the neural plate border.
    Groves AK; LaBonne C
    Dev Biol; 2014 May; 389(1):2-12. PubMed ID: 24321819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The neural border: Induction, specification and maturation of the territory that generates neural crest cells.
    Pla P; Monsoro-Burq AH
    Dev Biol; 2018 Dec; 444 Suppl 1():S36-S46. PubMed ID: 29852131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive spatiotemporal analysis of early chick neural crest network genes.
    Khudyakov J; Bronner-Fraser M
    Dev Dyn; 2009 Mar; 238(3):716-23. PubMed ID: 19235729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shared evolutionary origin of vertebrate neural crest and cranial placodes.
    Horie R; Hazbun A; Chen K; Cao C; Levine M; Horie T
    Nature; 2018 Aug; 560(7717):228-232. PubMed ID: 30069052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis.
    Maharana SK; Schlosser G
    BMC Biol; 2018 Jul; 16(1):79. PubMed ID: 30012125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A time-resolved single-cell roadmap of the logic driving anterior neural crest diversification from neural border to migration stages.
    Kotov A; Seal S; Alkobtawi M; Kappès V; Ruiz SM; Arbès H; Harland RM; Peshkin L; Monsoro-Burq AH
    Proc Natl Acad Sci U S A; 2024 May; 121(19):e2311685121. PubMed ID: 38683994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor.
    Brugmann SA; Pandur PD; Kenyon KL; Pignoni F; Moody SA
    Development; 2004 Dec; 131(23):5871-81. PubMed ID: 15525662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin and segregation of cranial placodes in Xenopus laevis.
    Pieper M; Eagleson GW; Wosniok W; Schlosser G
    Dev Biol; 2011 Dec; 360(2):257-75. PubMed ID: 21989028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specification of sensory placode progenitors: signals and transcription factor networks.
    Streit A
    Int J Dev Biol; 2018; 62(1-2-3):195-205. PubMed ID: 29616729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of Snail-mediated regulation of neural crest and placodes from an ancient role in bilaterian neurogenesis.
    York JR; Zehnder K; Yuan T; Lakiza O; McCauley DW
    Dev Biol; 2019 Sep; 453(2):180-190. PubMed ID: 31211947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making a head: Neural crest and ectodermal placodes in cranial sensory development.
    Koontz A; Urrutia HA; Bronner ME
    Semin Cell Dev Biol; 2023 Mar; 138():15-27. PubMed ID: 35760729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Avian neural crest cell fate decisions: a diffusible signal mediates induction of neural crest by the ectoderm.
    Selleck MA; Bronner-Fraser M
    Int J Dev Neurosci; 2000 Nov; 18(7):621-7. PubMed ID: 10978840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.