These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 37530879)

  • 21. Machine learning prediction of empirical polarity using SMILES encoding of organic solvents.
    Saini V
    Mol Divers; 2023 Oct; 27(5):2331-2343. PubMed ID: 36334165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction-Inspired Intelligent Training for the Development of Classification Read-across Structure-Activity Relationship (c-RASAR) Models for Organic Skin Sensitizers: Assessment of Classification Error Rate from Novel Similarity Coefficients.
    Banerjee A; Roy K
    Chem Res Toxicol; 2023 Sep; 36(9):1518-1531. PubMed ID: 37584642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing the Effect of Photovoltaic Material on V
    Huang D; Li Z; Wang K; Zhou H; Zhao X; Peng X; Zhang R; Wu J; Liang J; Zhao L
    Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oligomer Molecules for Efficient Organic Photovoltaics.
    Lin Y; Zhan X
    Acc Chem Res; 2016 Feb; 49(2):175-83. PubMed ID: 26540366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods.
    Hao Y; Sun G; Fan T; Sun X; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y
    Ecotoxicol Environ Saf; 2019 Dec; 186():109822. PubMed ID: 31634658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cheminformatics Analysis and Modeling with MacrolactoneDB.
    Zin PPK; Williams GJ; Ekins S
    Sci Rep; 2020 Apr; 10(1):6284. PubMed ID: 32286395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Providing a Photovoltaic Performance Enhancement Relationship from Binary to Ternary Polymer Solar Cells via Machine Learning.
    Cao J; Xu Z
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient predictions of cytotoxicity of TiO
    Banerjee A; Kar S; Pore S; Roy K
    Nanotoxicology; 2023 Feb; 17(1):78-93. PubMed ID: 36891579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Ternary Organic Solar Cells with Two Compatible Non-Fullerene Materials as One Alloyed Acceptor.
    An Q; Zhang J; Gao W; Qi F; Zhang M; Ma X; Yang C; Huo L; Zhang F
    Small; 2018 Nov; 14(45):e1802983. PubMed ID: 30303607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis and Prediction of Hydrothermally Synthesized ZnO-Based Dye-Sensitized Solar Cell Properties Using Statistical and Machine-Learning Techniques.
    Sutar SS; Patil SM; Kadam SJ; Kamat RK; Kim DK; Dongale TD
    ACS Omega; 2021 Nov; 6(44):29982-29992. PubMed ID: 34778669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ChemSuite: A package for chemoinformatics calculations and machine learning.
    Tangadpalliwar SR; Vishwakarma S; Nimbalkar R; Garg P
    Chem Biol Drug Des; 2019 May; 93(5):960-964. PubMed ID: 30637953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accelerated exploration of efficient ternary solar cells with PTB7:PC
    Guo C; Li Z; Wang K; Zhou X; Huang D; Liang J; Zhao L
    Phys Chem Chem Phys; 2022 Sep; 24(37):22538-22545. PubMed ID: 36112032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Achieving efficient and stabilized organic solar cells by precisely controlling the proportion of copolymerized units in electron-rich polymers.
    Xie Q; Cui Y; Chen Z; Zhang M; Liu C; Zhu H; Liu F; Brabec CJ; Liao X; Chen Y
    Nanoscale; 2022 Dec; 14(47):17714-17724. PubMed ID: 36420579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Efficiency Non-Fullerene Acceptors Developed by Machine Learning and Quantum Chemistry.
    Zhang Q; Zheng YJ; Sun W; Ou Z; Odunmbaku O; Li M; Chen S; Zhou Y; Li J; Qin B; Sun K
    Adv Sci (Weinh); 2022 Feb; 9(6):e2104742. PubMed ID: 34989179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of Donor Polymers with Strong Temperature-Dependent Aggregation Property for Efficient Organic Photovoltaics.
    Hu H; Chow PCY; Zhang G; Ma T; Liu J; Yang G; Yan H
    Acc Chem Res; 2017 Oct; 50(10):2519-2528. PubMed ID: 28915001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Finding Needles in a Haystack: Determining Key Molecular Descriptors Associated with the Blood-brain Barrier Entry of Chemical Compounds Using Machine Learning.
    Majumdar S; Basak SC; Lungu CN; Diudea MV; Grunwald GD
    Mol Inform; 2019 Aug; 38(8-9):e1800164. PubMed ID: 31322827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of An Oral Bioavailability Prediction Model Based on Machine Learning for Evaluating Molecular Modifications.
    Yang Q; Fan L; Hao E; Hou X; Deng J; Xia Z; Du Z
    J Pharm Sci; 2024 May; 113(5):1155-1167. PubMed ID: 38430955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Designing Sustainable Hydrophilic Interfaces via Feature Selection from Molecular Descriptors and Time-Domain Nuclear Magnetic Resonance Relaxation Curves.
    Okada M; Amamoto Y; Kikuchi J
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Random Forest Model to Predict the Activity of a Large Set of Soluble Epoxide Hydrolase Inhibitors Solely Based on a Set of Simple Fragmental Descriptors.
    Shamsara J
    Comb Chem High Throughput Screen; 2019; 22(8):555-569. PubMed ID: 31622216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diketopyrrolopyrrole Polymers for Organic Solar Cells.
    Li W; Hendriks KH; Wienk MM; Janssen RA
    Acc Chem Res; 2016 Jan; 49(1):78-85. PubMed ID: 26693798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.