These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37531202)

  • 1. Digital Manufacturing of Functional Ready-to-Use Microfluidic Systems.
    Karamzadeh V; Sohrabi-Kashani A; Shen M; Juncker D
    Adv Mater; 2023 Nov; 35(47):e2303867. PubMed ID: 37531202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices.
    Shafique H; Karamzadeh V; Kim G; Shen ML; Morocz Y; Sohrabi-Kashani A; Juncker D
    Lab Chip; 2024 May; 24(10):2774-2790. PubMed ID: 38682609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits.
    Olanrewaju A; Beaugrand M; Yafia M; Juncker D
    Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autonomous microfluidic capillaric circuits replicated from 3D-printed molds.
    Olanrewaju AO; Robillard A; Dagher M; Juncker D
    Lab Chip; 2016 Sep; 16(19):3804-3814. PubMed ID: 27722504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices.
    Kotz F; Risch P; Helmer D; Rapp BE
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printed Microfluidic One-Way Valves and Pumps.
    Hinnen H; Viglione M; Munro TR; Woolley AT; Nordin GP
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital Manufacturing for Microfluidics.
    Naderi A; Bhattacharjee N; Folch A
    Annu Rev Biomed Eng; 2019 Jun; 21():325-364. PubMed ID: 31167099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital Manufacturing of Selective Porous Barriers in Microchannels Using Multi-Material Stereolithography.
    Kim YT; Castro K; Bhattacharjee N; Folch A
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.
    Alapan Y; Hasan MN; Shen R; Gurkan UA
    J Nanotechnol Eng Med; 2015 May; 6(2):. PubMed ID: 27512530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Capillaric Circuit for Rapid and Facile Bacteria Detection.
    Olanrewaju AO; Ng A; DeCorwin-Martin P; Robillard A; Juncker D
    Anal Chem; 2017 Jun; 89(12):6846-6853. PubMed ID: 28541034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printed microfluidic valve on PCB for flow control applications using liquid metal.
    Hamza A; Navale A; Song Q; Bhagwat S; Kotz-Helmer F; Pezeshkpour P; Rapp BE
    Biomed Microdevices; 2024 Jan; 26(1):14. PubMed ID: 38289398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-Printed Capillary Circuits for Calibration-Free Viscosity Measurement of Newtonian and Non-Newtonian Fluids.
    Oh S; Choi S
    Micromachines (Basel); 2018 Jun; 9(7):. PubMed ID: 30424247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can 3D Printing Bring Droplet Microfluidics to Every Lab?-A Systematic Review.
    Gyimah N; Scheler O; Rang T; Pardy T
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33810056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion-free valve for preprogrammed immunoassay with capillary microfluidics.
    Azizian P; Casals-Terré J; Ricart J; Cabot JM
    Microsyst Nanoeng; 2023; 9():91. PubMed ID: 37469685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inkjet Printed Polyethylene Glycol as a Fugitive Ink for the Fabrication of Flexible Microfluidic Systems.
    Alfadhel A; Ouyang J; Mahajan CG; Forouzandeh F; Cormier D; Borkholder DA
    Mater Des; 2018 Jul; 150():182-187. PubMed ID: 30364619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.