These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 37531225)

  • 1. Stacked or Folded? Impact of Chelate Cooperativity on the Self-Assembly Pathway to Helical Nanotubes from Dinucleobase Monomers.
    González-Sánchez M; Mayoral MJ; Vázquez-González V; Paloncýová M; Sancho-Casado I; Aparicio F; de Juan A; Longhi G; Norman P; Linares M; González-Rodríguez D
    J Am Chem Soc; 2023 Aug; 145(32):17805-17818. PubMed ID: 37531225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncovalent Synthesis of Self-Assembled Nanotubes through Decoupled Hierarchical Cooperative Processes.
    Vázquez-González V; Mayoral MJ; Chamorro R; Hendrix MMRM; Voets IK; González-Rodríguez D
    J Am Chem Soc; 2019 Oct; 141(41):16432-16438. PubMed ID: 31507182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dinucleoside-Based Macrocycles Displaying Unusually Large Chelate Cooperativities.
    Serrano-Molina D; de Juan A; González-Rodríguez D
    Chem Rec; 2021 Mar; 21(3):480-497. PubMed ID: 33369024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured Micelle Nanotubes Self-Assembled from Dinucleobase Monomers in Water.
    Aparicio F; Chamorro PB; Chamorro R; Casado S; González-Rodríguez D
    Angew Chem Int Ed Engl; 2020 Sep; 59(39):17091-17096. PubMed ID: 32543105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Peripheral Amide Groups as Hydrogen-Bonding Directors in the Tubular Self-Assembly of Dinucleobase Monomers.
    Vázquez-González V; Mayoral MJ; Aparicio F; Martínez-Arjona P; González-Rodríguez D
    Chempluschem; 2021 Jun; 86(8):1087-1096. PubMed ID: 34185949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Large Can We Build a Cyclic Assembly? Impact of Ring Size on Chelate Cooperativity in Noncovalent Macrocyclizations.
    Montoro-García C; Mayoral MJ; Chamorro R; González-Rodríguez D
    Angew Chem Int Ed Engl; 2017 Dec; 56(49):15649-15653. PubMed ID: 29058828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of cyclic peptide monolayers by hydrophobic supramolecular hinges.
    Insua I; Cardellini A; Díaz S; Bergueiro J; Capelli R; Pavan GM; Montenegro J
    Chem Sci; 2023 Dec; 14(48):14074-14081. PubMed ID: 38098728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperativity Scale: A Structure-Mechanism Correlation in the Self-Assembly of Benzene-1,3,5-tricarboxamides.
    Kulkarni C; Meijer EW; Palmans ARA
    Acc Chem Res; 2017 Aug; 50(8):1928-1936. PubMed ID: 28692276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular Architecture through Self-Organization of Janus-Faced Homoazanucleosides.
    Mishra UK; Sanghvi YS; Egli M; Ramesh NG
    J Org Chem; 2021 Jan; 86(1):367-378. PubMed ID: 33284627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switching between Stacked Toroids and Helical Supramolecular Polymers in Aqueous Nanotubules.
    Wang H; Lee M
    Macromol Rapid Commun; 2020 Jun; 41(11):e2000138. PubMed ID: 32307804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cation-Anion Arrangement Patterns in Self-Assembled Pd
    Clever GH; Punt P
    Acc Chem Res; 2017 Sep; 50(9):2233-2243. PubMed ID: 28817257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct Crystalline Aromatic Structural Motifs: Identification, Classification, and Implications.
    Ramakrishnan R; Niyas MA; Lijina MP; Hariharan M
    Acc Chem Res; 2019 Nov; 52(11):3075-3086. PubMed ID: 31449389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning morphological architectures generated through living supramolecular assembly of a helical foldamer end-capped with two complementary nucleobases.
    Marafon G; Menegazzo I; De Zotti M; Crisma M; Toniolo C; Moretto A
    Soft Matter; 2017 Jun; 13(23):4231-4240. PubMed ID: 28509927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Polymer Polymorphism: Spontaneous Helix-Helicoid Transition through Dislocation of Hydrogen-Bonded π-Rosettes.
    Otsuka C; Takahashi S; Isobe A; Saito T; Aizawa T; Tsuchida R; Yamashita S; Harano K; Hanayama H; Shimizu N; Takagi H; Haruki R; Liu L; Hollamby MJ; Ohkubo T; Yagai S
    J Am Chem Soc; 2023 Oct; 145(41):22563-22576. PubMed ID: 37796243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scissor-Shaped Photochromic Dyads: Hierarchical Self-Assembly and Photoresponsive Property.
    Tashiro K; Saito T; Arima H; Suda N; Vedhanarayanan B; Yagai S
    Chem Rec; 2022 Feb; 22(2):e202100252. PubMed ID: 34669237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harmonizing Topological Features of Self-Assembled Fibers by Rosette-Mediated Random Supramolecular Copolymerization and Self-Sorting of Monomers by Photo-Cross-Linking.
    Takahashi S; Yagai S
    J Am Chem Soc; 2022 Jul; 144(29):13374-13383. PubMed ID: 35833747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleobase-Interaction-Directed Biomimetic Supramolecular Self-Assembly.
    Sikder A; Esen C; O'Reilly RK
    Acc Chem Res; 2022 Jun; 55(12):1609-1619. PubMed ID: 35671460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary Structure in Nonpeptidic Supramolecular Block Copolymers.
    Milton M; Deng R; Mann A; Wang C; Tang D; Weck M
    Acc Chem Res; 2021 May; 54(10):2397-2408. PubMed ID: 33914498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering orthogonality in supramolecular polymers: from simple scaffolds to complex materials.
    Elacqua E; Lye DS; Weck M
    Acc Chem Res; 2014 Aug; 47(8):2405-16. PubMed ID: 24905869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.