BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37531258)

  • 1. Residual Strain and Nanostructural Effects during Drying of Nanocellulose/Clay Nanosheet Hybrids: Synchrotron X-ray Scattering Results.
    Li L; Chen P; Medina L; Yang L; Nishiyama Y; Berglund LA
    ACS Nano; 2023 Aug; 17(16):15810-15820. PubMed ID: 37531258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong Reinforcement Effects in 2D Cellulose Nanofibril-Graphene Oxide (CNF-GO) Nanocomposites due to GO-Induced CNF Ordering.
    Mianehrow H; Lo Re G; Carosio F; Fina A; Larsson PT; Chen P; Berglund LA
    J Mater Chem A Mater; 2020 Sep; 8(34):17608-17620. PubMed ID: 33796318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Charges Control the Structure and Properties of Layered Nanocomposite of Cellulose Nanofibrils and Clay Platelets.
    Xu D; Wang S; Berglund LA; Zhou Q
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4463-4472. PubMed ID: 33428385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recyclable nanocomposites of well-dispersed 2D layered silicates in cellulose nanofibril (CNF) matrix.
    Li L; Maddalena L; Nishiyama Y; Carosio F; Ogawa Y; Berglund LA
    Carbohydr Polym; 2022 Mar; 279():119004. PubMed ID: 34980351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites.
    Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A
    Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macro- and Microstructural Evolution during Drying of Regenerated Cellulose Beads.
    Li H; Kruteva M; Mystek K; Dulle M; Ji W; Pettersson T; Wågberg L
    ACS Nano; 2020 Jun; 14(6):6774-6784. PubMed ID: 32383585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Drying Behavior of Regenerated Cellulose Gel Beads: The Effects of Concentration and Nonsolvents.
    Li H; Kruteva M; Dulle M; Wang Z; Mystek K; Ji W; Pettersson T; Wågberg L
    ACS Nano; 2022 Feb; 16(2):2608-2620. PubMed ID: 35104108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oriented clay nanopaper from biobased components--mechanisms for superior fire protection properties.
    Carosio F; Kochumalayil J; Cuttica F; Camino G; Berglund L
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5847-56. PubMed ID: 25723913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Strength Nanocomposite Aerogels of Ternary Composition: Poly(vinyl alcohol), Clay, and Cellulose Nanofibrils.
    Liu A; Medina L; Berglund LA
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6453-6461. PubMed ID: 28155270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured Wood Hybrids for Fire-Retardancy Prepared by Clay Impregnation into the Cell Wall.
    Fu Q; Medina L; Li Y; Carosio F; Hajian A; Berglund LA
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36154-36163. PubMed ID: 28825295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose-clay layered nanocomposite films fabricated from aqueous cellulose/LiOH/urea solution.
    Yang Q; Wu CN; Saito T; Isogai A
    Carbohydr Polym; 2014 Jan; 100():179-84. PubMed ID: 24188852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired Interface Engineering for Moisture Resistance in Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites.
    Yao K; Huang S; Tang H; Xu Y; Buntkowsky G; Berglund LA; Zhou Q
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20169-20178. PubMed ID: 28530799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composites of nanofibrillated cellulose with clay minerals: A review.
    Alves L; Ferraz E; Gamelas JAF
    Adv Colloid Interface Sci; 2019 Oct; 272():101994. PubMed ID: 31394436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing strategy for reduced energy demand of nanostructured CNF/clay composites with tailored interfaces.
    Yang X; Li L; Nishiyama Y; Reid MS; Berglund LA
    Carbohydr Polym; 2023 Jul; 312():120788. PubMed ID: 37059528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired and highly oriented clay nanocomposites with a xyloglucan biopolymer matrix: extending the range of mechanical and barrier properties.
    Kochumalayil JJ; Bergenstråhle-Wohlert M; Utsel S; Wågberg L; Zhou Q; Berglund LA
    Biomacromolecules; 2013 Jan; 14(1):84-91. PubMed ID: 23198819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing.
    Huan S; Ajdary R; Bai L; Klar V; Rojas OJ
    Biomacromolecules; 2019 Feb; 20(2):635-644. PubMed ID: 30240194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile and quick formation of cellulose nanopaper with nanoparticles and its characterization.
    Ma L; Xu Z; Zhang X; Lin J; Tai R
    Carbohydr Polym; 2019 Oct; 221():195-201. PubMed ID: 31227158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocellulose/graphene oxide layered membranes: elucidating their behaviour during filtration of water and metal ions in real time.
    Valencia L; Monti S; Kumar S; Zhu C; Liu P; Yu S; Mathew AP
    Nanoscale; 2019 Nov; 11(46):22413-22422. PubMed ID: 31738353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward Semistructural Cellulose Nanocomposites: The Need for Scalable Processing and Interface Tailoring.
    Ansari F; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):2341-2350. PubMed ID: 29577729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drying-induced atomic structural rearrangements in sodium-based calcium-alumino-silicate-hydrate gel and the mitigating effects of ZrO
    Yang K; Özçelik VO; Garg N; Gong K; White CE
    Phys Chem Chem Phys; 2018 Mar; 20(13):8593-8606. PubMed ID: 29557431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.