These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 37531298)
1. A Workflow to Produce a Low-Cost In Vitro Platform for the Electric-Field Pacing of Cellularised 3D Porous Scaffolds. Solazzo M; Monaghan MG ACS Biomater Sci Eng; 2023 Aug; 9(8):4573-4582. PubMed ID: 37531298 [TBL] [Abstract][Full Text] [Related]
2. Structural crystallisation of crosslinked 3D PEDOT:PSS anisotropic porous biomaterials to generate highly conductive platforms for tissue engineering applications. Solazzo M; Monaghan MG Biomater Sci; 2021 Jun; 9(12):4317-4328. PubMed ID: 33683230 [TBL] [Abstract][Full Text] [Related]
3. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Guex AG; Puetzer JL; Armgarth A; Littmann E; Stavrinidou E; Giannelis EP; Malliaras GG; Stevens MM Acta Biomater; 2017 Oct; 62():91-101. PubMed ID: 28865991 [TBL] [Abstract][Full Text] [Related]
5. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
6. Controlling scaffold conductivity and pore size to direct myogenic cell alignment and differentiation. Basurto IM; Muhammad SA; Gardner GM; Christ GJ; Caliari SR J Biomed Mater Res A; 2022 Oct; 110(10):1681-1694. PubMed ID: 35762455 [TBL] [Abstract][Full Text] [Related]
7. Three-Dimensional Biomaterials with Spatiotemporal Control for Regenerative Tissue Engineering. Mendenhall J Acc Chem Res; 2023 Jun; 56(11):1313-1319. PubMed ID: 37103937 [TBL] [Abstract][Full Text] [Related]
8. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds. Samourides A; Browning L; Hearnden V; Chen B Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110384. PubMed ID: 31924046 [TBL] [Abstract][Full Text] [Related]
9. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508 [TBL] [Abstract][Full Text] [Related]
10. Isotropic and Anisotropic Scaffolds for Tissue Engineering: Collagen, Conventional, and Textile Fabrication Technologies and Properties. Tonndorf R; Aibibu D; Cherif C Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502469 [TBL] [Abstract][Full Text] [Related]
11. 3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application. Gostynska N; Shankar Krishnakumar G; Campodoni E; Panseri S; Montesi M; Sprio S; Kon E; Marcacci M; Tampieri A; Sandri M Biomed Mater; 2017 Aug; 12(5):055002. PubMed ID: 28573980 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
13. Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration. Furlani F; Campodoni E; Sangiorgi N; Montesi M; Sanson A; Sandri M; Panseri S Int J Biol Macromol; 2023 Jan; 224():266-280. PubMed ID: 36265541 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125 [TBL] [Abstract][Full Text] [Related]
15. Developing Porous Fibrin Scaffolds with Tunable Anisotropic Features to Direct Myoblast Orientation. Samolyk BL; Pace ZY; Li J; Billiar KL; Coburn JM; Whittington CF; Pins GD Tissue Eng Part C Methods; 2024 May; 30(5):217-228. PubMed ID: 38562112 [TBL] [Abstract][Full Text] [Related]
17. Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole. Alegret N; Dominguez-Alfaro A; González-Domínguez JM; Arnaiz B; Cossío U; Bosi S; Vázquez E; Ramos-Cabrer P; Mecerreyes D; Prato M ACS Appl Mater Interfaces; 2018 Dec; 10(50):43904-43914. PubMed ID: 30475577 [TBL] [Abstract][Full Text] [Related]
18. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering. Kelly CN; Miller AT; Hollister SJ; Guldberg RE; Gall K Adv Healthc Mater; 2018 Apr; 7(7):e1701095. PubMed ID: 29280325 [TBL] [Abstract][Full Text] [Related]
19. Extruded Bioreactor Perfusion Culture Supports the Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells in 3D Porous Poly(ɛ-Caprolactone) Scaffolds. Silva JC; Moura CS; Borrecho G; de Matos APA; da Silva CL; Cabral JMS; Bártolo PJ; Linhardt RJ; Ferreira FC Biotechnol J; 2020 Feb; 15(2):e1900078. PubMed ID: 31560160 [TBL] [Abstract][Full Text] [Related]
20. A Simple Modification Method to Obtain Anisotropic and Porous 3D Microfibrillar Scaffolds for Surgical and Biomedical Applications. Hosseini V; Evrova O; Hoerstrup SP; Vogel V Small; 2018 Jan; 14(4):. PubMed ID: 29205905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]