BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 37531432)

  • 1. Investigation of hydrated channels and proton pathways in a high-resolution cryo-EM structure of mammalian complex I.
    Grba DN; Chung I; Bridges HR; Agip AA; Hirst J
    Sci Adv; 2023 Aug; 9(31):eadi1359. PubMed ID: 37531432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial complex I structure reveals ordered water molecules for catalysis and proton translocation.
    Grba DN; Hirst J
    Nat Struct Mol Biol; 2020 Oct; 27(10):892-900. PubMed ID: 32747785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-EM structures define ubiquinone-10 binding to mitochondrial complex I and conformational transitions accompanying Q-site occupancy.
    Chung I; Wright JJ; Bridges HR; Ivanov BS; Biner O; Pereira CS; Arantes GM; Hirst J
    Nat Commun; 2022 May; 13(1):2758. PubMed ID: 35589726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-electron microscopy reveals how acetogenins inhibit mitochondrial respiratory complex I.
    Grba DN; Blaza JN; Bridges HR; Agip AA; Yin Z; Murai M; Miyoshi H; Hirst J
    J Biol Chem; 2022 Mar; 298(3):101602. PubMed ID: 35063503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory Complex I in
    Jones AJ; Blaza JN; Varghese F; Hirst J
    J Biol Chem; 2017 Mar; 292(12):4987-4995. PubMed ID: 28174301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respiratory complex I - Mechanistic insights and advances in structure determination.
    Galemou Yoga E; Angerer H; Parey K; Zickermann V
    Biochim Biophys Acta Bioenerg; 2020 Mar; 1861(3):148153. PubMed ID: 31935361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the Deactive State of Mammalian Respiratory Complex I.
    Blaza JN; Vinothkumar KR; Hirst J
    Structure; 2018 Feb; 26(2):312-319.e3. PubMed ID: 29395787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of inhibitor-bound mammalian complex I.
    Bridges HR; Fedor JG; Blaza JN; Di Luca A; Jussupow A; Jarman OD; Wright JJ; Agip AA; Gamiz-Hernandez AP; Roessler MM; Kaila VRI; Hirst J
    Nat Commun; 2020 Oct; 11(1):5261. PubMed ID: 33067417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryo-EM structures of mitochondrial respiratory complex I from
    Agip AA; Chung I; Sanchez-Martinez A; Whitworth AJ; Hirst J
    Elife; 2023 Jan; 12():. PubMed ID: 36622099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryo-EM structure of respiratory complex I at work.
    Parey K; Brandt U; Xie H; Mills DJ; Siegmund K; Vonck J; Kühlbrandt W; Zickermann V
    Elife; 2018 Oct; 7():. PubMed ID: 30277212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states.
    Agip AA; Blaza JN; Bridges HR; Viscomi C; Rawson S; Muench SP; Hirst J
    Nat Struct Mol Biol; 2018 Jul; 25(7):548-556. PubMed ID: 29915388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The coupling mechanism of mammalian mitochondrial complex I.
    Gu J; Liu T; Guo R; Zhang L; Yang M
    Nat Struct Mol Biol; 2022 Feb; 29(2):172-182. PubMed ID: 35145322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase.
    Vinogradov AD
    J Bioenerg Biomembr; 1993 Aug; 25(4):367-75. PubMed ID: 8226718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian complex I pumps 4 protons per 2 electrons at high and physiological proton motive force in living cells.
    Ripple MO; Kim N; Springett R
    J Biol Chem; 2013 Feb; 288(8):5374-80. PubMed ID: 23306206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of ubiquinone in the proton translocation mechanism of respiratory complex I.
    Wikström M; Djurabekova A; Sharma V
    FEBS Lett; 2023 Jan; 597(2):224-236. PubMed ID: 36180980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial complex I.
    Hirst J
    Annu Rev Biochem; 2013; 82():551-75. PubMed ID: 23527692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oversized ubiquinones as molecular probes for structural dynamics of the ubiquinone reaction site in mitochondrial respiratory complex I.
    Uno S; Masuya T; Shinzawa-Itoh K; Lasham J; Haapanen O; Shiba T; Inaoka DK; Sharma V; Murai M; Miyoshi H
    J Biol Chem; 2020 Feb; 295(8):2449-2463. PubMed ID: 31953326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian Respiratory Complex I Through the Lens of Cryo-EM.
    Agip AA; Blaza JN; Fedor JG; Hirst J
    Annu Rev Biophys; 2019 May; 48():165-184. PubMed ID: 30786232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making the leap from structure to mechanism: are the open states of mammalian complex I identified by cryoEM resting states or catalytic intermediates?
    Chung I; Grba DN; Wright JJ; Hirst J
    Curr Opin Struct Biol; 2022 Dec; 77():102447. PubMed ID: 36087446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I.
    Hirst J; Roessler MM
    Biochim Biophys Acta; 2016 Jul; 1857(7):872-83. PubMed ID: 26721206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.