These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 37531676)
1. Photosynthetic responses of crustose coralline algae recruit from an upwelling area to light intensity, temperature and current flow rate in a mesocosm. Villas-Boas AB; Tâmega FTS; Figueiredo MAO; Coutinho R Mar Environ Res; 2023 Sep; 190():106118. PubMed ID: 37531676 [TBL] [Abstract][Full Text] [Related]
2. Recruitment of crustose coralline algae on tiles material for monitoring coral larvae settlement's consolidators at Nature Reserve Pulau Sempu, East Java, Indonesia. Guntur ; Luthfi OM; Asadi MA Braz J Biol; 2021; 83():e245922. PubMed ID: 34468513 [TBL] [Abstract][Full Text] [Related]
3. A possible link between coral reef success, crustose coralline algae and the evolution of herbivory. Teichert S; Steinbauer M; Kiessling W Sci Rep; 2020 Oct; 10(1):17748. PubMed ID: 33082388 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical settlement behaviours of coral larvae to common coralline algae. Abdul Wahab MA; Ferguson S; Snekkevik VK; McCutchan G; Jeong S; Severati A; Randall CJ; Negri AP; Diaz-Pulido G Sci Rep; 2023 Apr; 13(1):5795. PubMed ID: 37032381 [TBL] [Abstract][Full Text] [Related]
5. Crustose coralline algae increased framework and diversity on ancient coral reefs. Weiss A; Martindale RC PLoS One; 2017; 12(8):e0181637. PubMed ID: 28783733 [TBL] [Abstract][Full Text] [Related]
6. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376 [TBL] [Abstract][Full Text] [Related]
7. Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. Webster NS; Soo R; Cobb R; Negri AP ISME J; 2011 Apr; 5(4):759-70. PubMed ID: 20944682 [TBL] [Abstract][Full Text] [Related]
8. Growth and carbonate production of crustose coralline algae on a degraded turbid reef system. Goh TZY; Bauman AG; Januchowski-Hartley FA; Morgan KM; Seah JCL; Todd PA Mar Pollut Bull; 2021 Dec; 173(Pt B):113135. PubMed ID: 34801889 [TBL] [Abstract][Full Text] [Related]
9. Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Jorissen H; Galand PE; Bonnard I; Meiling S; Raviglione D; Meistertzheim AL; Hédouin L; Banaigs B; Payri CE; Nugues MM Sci Rep; 2021 Jul; 11(1):14610. PubMed ID: 34272460 [TBL] [Abstract][Full Text] [Related]
10. Plasticity of adult coralline algae to prolonged increased temperature and pCO2 exposure but reduced survival in their first generation. Page TM; Diaz-Pulido G PLoS One; 2020; 15(6):e0235125. PubMed ID: 32574214 [TBL] [Abstract][Full Text] [Related]
11. Seasonal upwelling conditions promote growth and calcification in reef-building coralline algae. Pulecio-Plaza L; Diaz-Pulido G; García-Urueña R J Phycol; 2023 Oct; 59(5):908-925. PubMed ID: 37596817 [TBL] [Abstract][Full Text] [Related]
12. Anthropogenic nitrogen pollution inferred by stable isotope records of crustose coralline algae. Nazir A; Lai CF; Wang SW; Lin SM; Li HC; Chung MT; Wang PL; Tseng YC; Shiao JC Mar Pollut Bull; 2024 Jan; 198():115839. PubMed ID: 38052138 [TBL] [Abstract][Full Text] [Related]
13. Coral larval settlement induction using tissue-associated and exuded coralline algae metabolites and the identification of putative chemical cues. Quinlan ZA; Bennett MJ; Arts MGI; Levenstein M; Flores D; Tholen HM; Tichy L; Juarez G; Haas AF; Chamberland VF; Latijnhouwers KRW; Vermeij MJA; Johnson AW; Marhaver KL; Kelly LW Proc Biol Sci; 2023 Oct; 290(2009):20231476. PubMed ID: 37848062 [TBL] [Abstract][Full Text] [Related]
14. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Vásquez-Elizondo RM; Enríquez S Sci Rep; 2016 Jan; 6():19030. PubMed ID: 26740396 [TBL] [Abstract][Full Text] [Related]
15. Warming may increase the vulnerability of calcareous algae to bioinvasions. Cebrian E; Linares C; Garrabou J Mar Pollut Bull; 2021 Dec; 173(Pt B):113099. PubMed ID: 34798431 [TBL] [Abstract][Full Text] [Related]
16. Coralline algal metabolites induce settlement and mediate the inductive effect of epiphytic microbes on coral larvae. Gómez-Lemos LA; Doropoulos C; Bayraktarov E; Diaz-Pulido G Sci Rep; 2018 Dec; 8(1):17557. PubMed ID: 30510183 [TBL] [Abstract][Full Text] [Related]
17. Geographic distance, sedimentation, and substrate shape cryptic crustose coralline algal assemblages in the world's largest subtropical intertidal algal reef. Zhan SH; Chen L; Liao CP; Chang WR; Li CC; Tang GY; Liou CY; Wang WL; Wang SW; Liu SL Mol Ecol; 2022 Jun; 31(11):3056-3071. PubMed ID: 35377521 [TBL] [Abstract][Full Text] [Related]
18. Possible control of acute outbreaks of a marine fungal pathogen by nominally herbivorous tropical reef fish. Neal BP; Honisch B; Warrender T; Williams GJ; Work TM; Price NN Oecologia; 2020 Jul; 193(3):603-617. PubMed ID: 32656606 [TBL] [Abstract][Full Text] [Related]
19. Crustose coralline algal species host distinct bacterial assemblages on their surfaces. Sneed JM; Ritson-Williams R; Paul VJ ISME J; 2015 Nov; 9(11):2527-36. PubMed ID: 25918832 [TBL] [Abstract][Full Text] [Related]
20. Impacts of light limitation on corals and crustose coralline algae. Bessell-Browne P; Negri AP; Fisher R; Clode PL; Jones R Sci Rep; 2017 Sep; 7(1):11553. PubMed ID: 28912462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]