These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 37531775)
41. Treatment of triple negative breast cancer by near infrared light triggered mild-temperature photothermal therapy combined with oxygen-independent cytotoxic free radicals. Li R; Hu X; Shang F; Wu W; Zhang H; Wang Y; Pan J; Shi S; Dong C Acta Biomater; 2022 Aug; 148():218-229. PubMed ID: 35705171 [TBL] [Abstract][Full Text] [Related]
42. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. Li Y; Liu G; Ma J; Lin J; Lin H; Su G; Chen D; Ye S; Chen X; Zhu X; Hou Z J Control Release; 2017 Jul; 258():95-107. PubMed ID: 28501673 [TBL] [Abstract][Full Text] [Related]
43. Recent advances in nanoparticle-based photothermal therapy for breast cancer. Alamdari SG; Amini M; Jalilzadeh N; Baradaran B; Mohammadzadeh R; Mokhtarzadeh A; Oroojalian F J Control Release; 2022 Sep; 349():269-303. PubMed ID: 35787915 [TBL] [Abstract][Full Text] [Related]
44. Development and characterization of pH-responsive nanocarriers for chemo-photothermal combination therapy of acidic tumors. Husni P; Shin Y; Jeon H; Lee ES; Youn YS; Poon CD; Lim C; Oh KT J Control Release; 2023 Jul; 359():52-68. PubMed ID: 37220804 [TBL] [Abstract][Full Text] [Related]
45. Nanomaterial-Enabled Photothermal Heating and Its Use for Cancer Therapy via Localized Hyperthermia. Shen S; Qiu J; Huo D; Xia Y Small; 2024 Feb; 20(7):e2305426. PubMed ID: 37803412 [TBL] [Abstract][Full Text] [Related]
46. Black hollow silicon oxide nanoparticles as highly efficient photothermal agents in the second near-infrared window for in vivo cancer therapy. Yu X; Yang K; Chen X; Li W Biomaterials; 2017 Oct; 143():120-129. PubMed ID: 28787664 [TBL] [Abstract][Full Text] [Related]
47. Evaluation of a nanocomposite of PEG-curcumin-gold nanoparticles as a near-infrared photothermal agent: an in vitro and animal model investigation. Rahimi-Moghaddam F; Azarpira N; Sattarahmady N Lasers Med Sci; 2018 Nov; 33(8):1769-1779. PubMed ID: 29790012 [TBL] [Abstract][Full Text] [Related]
48. Controlled Synthesis and Surface Engineering of Janus Chitosan-Gold Nanoparticles for Photoacoustic Imaging-Guided Synergistic Gene/Photothermal Therapy. Dai X; Zhao X; Liu Y; Chen B; Ding X; Zhao N; Xu FJ Small; 2021 Mar; 17(11):e2006004. PubMed ID: 33619841 [TBL] [Abstract][Full Text] [Related]
49. PPy@MIL-100 Nanoparticles as a pH- and Near-IR-Irradiation-Responsive Drug Carrier for Simultaneous Photothermal Therapy and Chemotherapy of Cancer Cells. Zhu YD; Chen SP; Zhao H; Yang Y; Chen XQ; Sun J; Fan HS; Zhang XD ACS Appl Mater Interfaces; 2016 Dec; 8(50):34209-34217. PubMed ID: 27998104 [TBL] [Abstract][Full Text] [Related]
50. Biomimetic nanoparticles for effective mild temperature photothermal therapy and multimodal imaging. Shu X; Chen Y; Yan P; Xiang Y; Shi QY; Yin T; Wang P; Liu LH; Shuai X J Control Release; 2022 Jul; 347():270-281. PubMed ID: 35550912 [TBL] [Abstract][Full Text] [Related]
51. Small-size Ti Liao T; Chen Z; Kuang Y; Ren Z; Yu W; Rao W; Li L; Liu Y; Xu Z; Jiang B; Li C Acta Biomater; 2023 Mar; 159():312-323. PubMed ID: 36708854 [TBL] [Abstract][Full Text] [Related]
52. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Wang K; Zhang Y; Wang J; Yuan A; Sun M; Wu J; Hu Y Sci Rep; 2016 Jun; 6():27421. PubMed ID: 27263444 [TBL] [Abstract][Full Text] [Related]
54. Recent Advances in Photothermal Therapies Against Cancer and the Role of Membrane Transporter Modulators on the Efficacy of This Approach. Al-Ali AAA; Al Ward N; Obeid MA; Uhd Nielsen C; Mulheran PA; Al Qaraghuli MM Technol Cancer Res Treat; 2023; 22():15330338231168016. PubMed ID: 37138532 [TBL] [Abstract][Full Text] [Related]
55. Tumor targeting and penetrating biomimetic mesoporous polydopamine nanoparticles facilitate photothermal killing and autophagy blocking for synergistic tumor ablation. Huang X; Chen L; Lin Y; Tou KI; Cai H; Jin H; Lin W; Zhang J; Cai J; Zhou H; Pi J Acta Biomater; 2021 Dec; 136():456-472. PubMed ID: 34562660 [TBL] [Abstract][Full Text] [Related]
56. Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion. Wang X; Li H; Liu X; Tian Y; Guo H; Jiang T; Luo Z; Jin K; Kuai X; Liu Y; Pang Z; Yang W; Shen S Biomaterials; 2017 Oct; 143():130-141. PubMed ID: 28800434 [TBL] [Abstract][Full Text] [Related]
57. Förster Resonance Energy Transfer-Based Dual-Modal Theranostic Nanoprobe for Hu D; Sheng Z; Zhu M; Wang X; Yan F; Liu C; Song L; Qian M; Liu X; Zheng H Theranostics; 2018; 8(2):410-422. PubMed ID: 29290817 [TBL] [Abstract][Full Text] [Related]
58. A full-spectrum-absorption from nickel sulphide nanoparticles for efficient NIR-II window photothermal therapy. Lei Z; Zhang W; Li B; Guan G; Huang X; Peng X; Zou R; Hu J Nanoscale; 2019 Nov; 11(42):20161-20170. PubMed ID: 31616888 [TBL] [Abstract][Full Text] [Related]
59. Side-chain engineering of organic photothermal agents for boosting further red-shifted absorption and higher photothermal therapeutic effect. Tang C; Pan Y; Wei Z; Liu L; Xu J; Han W; Cai Y Colloids Surf B Biointerfaces; 2024 Jan; 233():113611. PubMed ID: 37924748 [TBL] [Abstract][Full Text] [Related]
60. Light-Driven Biomimetic Nanomotors for Enhanced Photothermal Therapy. Wang H; Gao J; Xu C; Jiang Y; Liu M; Qin H; Ye Y; Zhang L; Luo W; Chen B; Du L; Peng F; Li Y; Tu Y Small; 2024 Jan; 20(3):e2306208. PubMed ID: 37670543 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]