BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37531893)

  • 21. Physiological, developmental, and behavioral plasticity in response to thermal acclimation.
    Fan XL; Lin ZH; Scheffers BR
    J Therm Biol; 2021 Apr; 97():102866. PubMed ID: 33863430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological thermal limits predict differential responses of bees to urban heat-island effects.
    Hamblin AL; Youngsteadt E; López-Uribe MM; Frank SD
    Biol Lett; 2017 Jun; 13(6):. PubMed ID: 28637837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heat hardening of a larval amphibian is dependent on acclimation period and temperature.
    Dallas J; Warne RW
    J Exp Zool A Ecol Integr Physiol; 2023 May; 339(4):339-345. PubMed ID: 36811331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction.
    Simon MN; Ribeiro PL; Navas CA
    J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Despite plasticity, heatwaves are costly for a coral reef fish.
    Van Wert JC; Birnie-Gauvin K; Gallagher J; Hardison EA; Landfield K; Burkepile DE; Eliason EJ
    Sci Rep; 2024 Jun; 14(1):13320. PubMed ID: 38858427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change.
    Stitt BC; Burness G; Burgomaster KA; Currie S; McDermid JL; Wilson CC
    Physiol Biochem Zool; 2014; 87(1):15-29. PubMed ID: 24457918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal tolerance responses of the two-spotted stink bug, Bathycoelia distincta (Hemiptera: Pentatomidae), vary with life stage and the sex of adults.
    Muluvhahothe MM; Joubert E; Foord SH
    J Therm Biol; 2023 Jan; 111():103395. PubMed ID: 36585076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations.
    Ruthsatz K; Dahlke F; Alter K; Wohlrab S; Eterovick PC; Lyra ML; Gippner S; Cooke SJ; Peck MA
    Glob Chang Biol; 2024 May; 30(5):e17318. PubMed ID: 38771091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time course of acclimation of critical thermal limits in two springtail species (Collembola).
    Kuyucu AC; Chown SL
    J Insect Physiol; 2021 Apr; 130():104209. PubMed ID: 33609519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance.
    Drake JE; Tjoelker MG; Vårhammar A; Medlyn BE; Reich PB; Leigh A; Pfautsch S; Blackman CJ; López R; Aspinwall MJ; Crous KY; Duursma RA; Kumarathunge D; De Kauwe MG; Jiang M; Nicotra AB; Tissue DT; Choat B; Atkin OK; Barton CVM
    Glob Chang Biol; 2018 Jun; 24(6):2390-2402. PubMed ID: 29316093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile.
    Jumbam KR; Jackson S; Terblanche JS; McGeoch MA; Chown SL
    J Insect Physiol; 2008 Jun; 54(6):1008-14. PubMed ID: 18534612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae.
    Moyano M; Candebat C; Ruhbaum Y; Álvarez-Fernández S; Claireaux G; Zambonino-Infante JL; Peck MA
    PLoS One; 2017; 12(7):e0179928. PubMed ID: 28749960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat resistance throughout ontogeny: body size constrains thermal tolerance.
    Klockmann M; Günter F; Fischer K
    Glob Chang Biol; 2017 Feb; 23(2):686-696. PubMed ID: 27371939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-term acclimation dynamics in a coldwater fish.
    Stewart EMC; Frasca VR; Wilson CC; Raby GD
    J Therm Biol; 2023 Feb; 112():103482. PubMed ID: 36796924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flies on the rise: acclimation effect on mitochondrial oxidation capacity at normal and high temperatures in Drosophila melanogaster.
    Blanchard A; Aminot M; Gould N; Léger A; Pichaud N
    J Exp Biol; 2024 Jun; 227(12):. PubMed ID: 38841909
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal limits of Africanized honey bees are influenced by temperature ramping rate but not by other experimental conditions.
    Gonzalez VH; Oyen K; Ávila O; Ospina R
    J Therm Biol; 2022 Dec; 110():103369. PubMed ID: 36462866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geographic variation in acclimation responses of thermal tolerance in South African diving beetles (Dytiscidae: Coleoptera).
    Hidalgo-Galiana A; Ribera I; Terblanche JS
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Jul; 257():110955. PubMed ID: 33839295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Upper thermal limits are repeatable in Trinidadian guppies.
    Grinder RM; Bassar RD; Auer SK
    J Therm Biol; 2020 May; 90():102597. PubMed ID: 32479392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low potential for evolutionary rescue from climate change in a tropical fish.
    Morgan R; Finnøen MH; Jensen H; Pélabon C; Jutfelt F
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33365-33372. PubMed ID: 33318195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mathematical modeling and analysis of the heat shock protein response during thermal stress in fish and HeLa cells.
    Dumas A; Liao KL; Jeffries KM
    Math Biosci; 2022 Apr; 346():108692. PubMed ID: 34481823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.