BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37531948)

  • 1. A novel simulation paradigm utilising MRI-derived phosphene maps for cortical prosthetic vision.
    Wang HZ; Wong YT
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37531948
    [No Abstract]   [Full Text] [Related]  

  • 2. Utilization of brain scans to create realistic phosphene maps for cortical visual prosthesis simulation studies.
    Wang HZ; Wong YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual cortical prosthesis: an electrical perspective.
    Pio-Lopez L; Poulkouras R; Depannemaecker D
    J Med Eng Technol; 2021 Jul; 45(5):394-407. PubMed ID: 33843427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards biologically plausible phosphene simulation for the differentiable optimization of visual cortical prostheses.
    van der Grinten M; de Ruyter van Steveninck J; Lozano A; Pijnacker L; Rueckauer B; Roelfsema P; van Gerven M; van Wezel R; Güçlü U; Güçlütürk Y
    Elife; 2024 Feb; 13():. PubMed ID: 38386406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
    Bosking WH; Sun P; Ozker M; Pei X; Foster BL; Beauchamp MS; Yoshor D
    J Neurosci; 2017 Jul; 37(30):7188-7197. PubMed ID: 28652411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rehabilitation regimes based upon psychophysical studies of prosthetic vision.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    J Neural Eng; 2009 Jun; 6(3):035009. PubMed ID: 19458400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PVGAN: a generative adversarial network for object simplification in prosthetic vision.
    Elnabawy RH; Abdennadher S; Hellwich O; Eldawlatly S
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35981530
    [No Abstract]   [Full Text] [Related]  

  • 8. Adaptation to Phosphene Parameters Based on Multi-Object Recognition Using Simulated Prosthetic Vision.
    Xia P; Hu J; Peng Y
    Artif Organs; 2015 Dec; 39(12):1038-45. PubMed ID: 25912967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved visual performance in letter perception through edge orientation encoding in a retinal prosthesis simulation.
    Kiral-Kornek FI; OʼSullivan-Greene E; Savage CO; McCarthy C; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):066002. PubMed ID: 25307496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal prosthetic vision simulation: temporal aspects.
    Avraham D; Jung JH; Yitzhaky Y; Peli E
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34359062
    [No Abstract]   [Full Text] [Related]  

  • 11. Simulating the perceptual effects of electrode-retina distance in prosthetic vision.
    Avraham D; Yitzhaky Y
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35561665
    [No Abstract]   [Full Text] [Related]  

  • 12. Estimating Phosphene Locations Using Eye Movements of Suprachoroidal Retinal Prosthesis Users.
    Titchener SA; Goossens J; Kvansakul J; Nayagam DAX; Kolic M; Baglin EK; Ayton LN; Abbott CJ; Luu CD; Barnes N; Kentler WG; Shivdasani MN; Allen PJ; Petoe MA
    Transl Vis Sci Technol; 2023 Mar; 12(3):20. PubMed ID: 36943168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection, eye-hand coordination and virtual mobility performance in simulated vision for a cortical visual prosthesis device.
    Srivastava NR; Troyk PR; Dagnelie G
    J Neural Eng; 2009 Jun; 6(3):035008. PubMed ID: 19458397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of objects in simulated irregular phosphene maps for an epiretinal prosthesis.
    Lu Y; Wang J; Wu H; Li L; Cao X; Chai X
    Artif Organs; 2014 Feb; 38(2):E10-20. PubMed ID: 24117959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics.
    Bosking WH; Beauchamp MS; Yoshor D
    Annu Rev Vis Sci; 2017 Sep; 3():141-166. PubMed ID: 28753382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Influence of Phosphene Synchrony in Driving Object Binding in a Simulation of Artificial Vision.
    Meital-Kfir N; Pezaris JS
    Invest Ophthalmol Vis Sci; 2023 Dec; 64(15):5. PubMed ID: 38051263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Object recognition under distorted prosthetic vision.
    Guo H; Wang Y; Yang Y; Tong S; Zhu Y; Qiu Y
    Artif Organs; 2010 Oct; 34(10):846-56. PubMed ID: 20545671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphene object perception employs holistic processing during early visual processing stage.
    Guo H; Yang Y; Gu G; Zhu Y; Qiu Y
    Artif Organs; 2013 Apr; 37(4):401-8. PubMed ID: 23489114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Psychophysics of prosthetic vision: I. Visual scanning and visual acuity.
    Chen SC; Hallum LE; Suaning GJ; Lovell NH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4400-3. PubMed ID: 17946627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Configuration-based processing of phosphene pattern recognition for simulated prosthetic vision.
    Guo H; Qin R; Qiu Y; Zhu Y; Tong S
    Artif Organs; 2010 Apr; 34(4):324-30. PubMed ID: 20420615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.