These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. ELISA and Chemiluminescent Enzyme Immunoassay for Sensitive and Specific Determination of Lead (II) in Water, Food and Feed Samples. Xu L; Suo XY; Zhang Q; Li XP; Chen C; Zhang XY Foods; 2020 Mar; 9(3):. PubMed ID: 32182696 [TBL] [Abstract][Full Text] [Related]
64. A Simple and Specific Noncompetitive ELISA Method for HT-2 Toxin Detection. Arola HO; Tullila A; Nathanail AV; Nevanen TK Toxins (Basel); 2017 Apr; 9(4):. PubMed ID: 28425967 [TBL] [Abstract][Full Text] [Related]
65. Effectiveness of Bacillus thuringiensis-transgenic chickpeas and the entomopathogenic fungus Metarhizium anisopliae in controlling Helicoverpa armigera (Lepidoptera: Noctuidae). Lawo NC; Mahon RJ; Milner RJ; Sarmah BK; Higgins TJ; Romeis J Appl Environ Microbiol; 2008 Jul; 74(14):4381-9. PubMed ID: 18487396 [TBL] [Abstract][Full Text] [Related]
66. Use of Bacillus thuringiensis toxins for control of the cotton pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Ibargutxi MA; Estela A; Ferré J; Caballero P Appl Environ Microbiol; 2006 Jan; 72(1):437-42. PubMed ID: 16391075 [TBL] [Abstract][Full Text] [Related]
67. Resistance of Cabbage Loopers to Bacillus thuringiensis (Bt) Toxin Cry1F and to Dual-Bt Toxin WideStrike Cotton Plants. Kain W; Cotto-Rivera RO; Wang P Appl Environ Microbiol; 2022 Oct; 88(20):e0119422. PubMed ID: 36200769 [TBL] [Abstract][Full Text] [Related]
68. Isolation of a peptide from Ph.D.-C7C phage display library for detection of Cry1Ab. Wang Y; Wang Q; Wu AH; Hao ZP; Liu XJ Anal Biochem; 2017 Dec; 539():29-32. PubMed ID: 28279647 [TBL] [Abstract][Full Text] [Related]
69. Unraveling the Composition of Insecticidal Crystal Proteins in Bacillus thuringiensis: a Proteomics Approach. Caballero J; Jiménez-Moreno N; Orera I; Williams T; Fernández AB; Villanueva M; Ferré J; Caballero P; Ancín-Azpilicueta C Appl Environ Microbiol; 2020 Jun; 86(12):. PubMed ID: 32276971 [No Abstract] [Full Text] [Related]
70. The midgut V-ATPase subunit A gene is associated with toxicity to crystal 2Aa and crystal 1Ca-expressing transgenic rice in Chilo suppressalis. Qiu L; Sun Y; Jiang Z; Yang P; Liu H; Zhou H; Wang X; Zhang W; Lin Y; Ma W Insect Mol Biol; 2019 Aug; 28(4):520-527. PubMed ID: 30719783 [TBL] [Abstract][Full Text] [Related]
71. Potential of the Bacillus thuringiensis toxin reservoir for the control of Lobesia botrana (Lepidoptera: Tortricidae), a major pest of grape plants. Ruiz de Escudero I; Estela A; Escriche B; Caballero P Appl Environ Microbiol; 2007 Jan; 73(1):337-40. PubMed ID: 17085712 [TBL] [Abstract][Full Text] [Related]
72. Determination of Cry9C protein in corn-based foods by enzyme-linked immunosorbent assay: interlaboratory study. Trucksess NW J AOAC Int; 2001; 84(6):1891-901. PubMed ID: 11767159 [TBL] [Abstract][Full Text] [Related]
73. Quantitative double antibody sandwich ELISA for the determination of gliadin. Gujral N; Suresh MR; Sunwoo HH J Immunoassay Immunochem; 2012; 33(4):339-51. PubMed ID: 22963484 [TBL] [Abstract][Full Text] [Related]
74. Highly Selective and Sensitive Electrochemical Immunoassay of Cry1C Using Nanobody and π-π Stacked Graphene Oxide/Thionine Assembly. Zhou Q; Li G; Zhang Y; Zhu M; Wan Y; Shen Y Anal Chem; 2016 Oct; 88(19):9830-9836. PubMed ID: 27617345 [TBL] [Abstract][Full Text] [Related]
75. Development of a highly sensitive and specific monoclonal antibody-based ELISA coupled with immuno-affinity extraction for the detection of anticancer drug 5-fluorouracil in blood samples. Zhou T; He G; Hu C; Wu K; Liu Y; Li J; Deng A Talanta; 2022 Nov; 249():123655. PubMed ID: 35696979 [TBL] [Abstract][Full Text] [Related]
76. Knockdown of the aminopeptidase N genes decreases susceptibility of Chilo suppressalis larvae to Cry1Ab/Cry1Ac and Cry1Ca. Sun Y; Yang P; Jin H; Liu H; Zhou H; Qiu L; Lin Y; Ma W Pestic Biochem Physiol; 2020 Jan; 162():36-42. PubMed ID: 31836052 [TBL] [Abstract][Full Text] [Related]
77. Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. Gómez I; Arenas I; Benitez I; Miranda-Ríos J; Becerril B; Grande R; Almagro JC; Bravo A; Soberón M J Biol Chem; 2006 Nov; 281(45):34032-9. PubMed ID: 16968705 [TBL] [Abstract][Full Text] [Related]
78. Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera. Ghosh G; Ganguly S; Purohit A; Chaudhuri RK; Das S; Chakraborti D Plant Cell Rep; 2017 Jul; 36(7):1037-1051. PubMed ID: 28352969 [TBL] [Abstract][Full Text] [Related]
79. Immunological analysis of phloem sap of Bacillus thuringiensis corn and of the nontarget herbivore Rhopalosiphum padi (Homoptera: Aphididae) for the presence of Cry1Ab. Raps A; Kehr J; Gugerli P; Moar WJ; Bigler F; Hilbeck A Mol Ecol; 2001 Feb; 10(2):525-33. PubMed ID: 11298965 [TBL] [Abstract][Full Text] [Related]
80. Intermolecular interaction between Cry2Aa and Cyt1Aa and its effect on larvicidal activity against Culex quinquefasciatus. Bideshi DK; Waldrop G; Fernandez-Luna MT; Diaz-Mendoza M; Wirth MC; Johnson JJ; Park HW; Federici BA J Microbiol Biotechnol; 2013 Aug; 23(8):1107-15. PubMed ID: 23727800 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]