BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37532198)

  • 21. Noncovalent interactions between fluoroquinolone antibiotics with dissolved organic matter: A
    Zhao X; Hu Z; Yang X; Cai X; Wang Z; Xie X
    Environ Pollut; 2019 May; 248():815-822. PubMed ID: 30852295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple simulation of adsorption equilibrium of Pb(II) on Andosols in the presence of dissolved humic substances for monitoring soil contamination.
    Liu Y; Kobayashi T; Takahashi Y; Kameya T; Urano K
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(13):1694-9. PubMed ID: 23947708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced removal of arsenic and cadmium from contaminated soils using a soluble humic substance coupled with chemical reductant.
    Wei J; Tu C; Xia F; Yang L; Chen Q; Chen Y; Deng S; Yuan G; Wang H; Jeyakumar P; Bhatnagar A
    Environ Res; 2023 Mar; 220():115120. PubMed ID: 36563980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances.
    Tsang DC; Hartley NR
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3987-95. PubMed ID: 24297462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissolved organic matter in urban forestland soil and its interactions with typical heavy metals: a case of Daxing District, Beijing.
    Zhao C; Gao SJ; Zhou L; Li X; Chen X; Wang CC
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2960-2973. PubMed ID: 30499096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of humic substances redox activity on environmental remediation.
    Peng XX; Gai S; Cheng K; Yang F
    J Hazard Mater; 2022 Aug; 435():129070. PubMed ID: 35650747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roxarsone desorption from the surface of goethite by competitive anions, phosphate and hydroxide ions: Significance of the presence of metal ions.
    Wang LY; Wang SW; Chen WR
    Chemosphere; 2016 Jun; 152():423-30. PubMed ID: 26999752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photodegradation of roxarsone in poultry litter leachates.
    Bednar AJ; Garbarino JR; Ferrer I; Rutherford DW; Wershaw RL; Ranville JF; Wildeman TR
    Sci Total Environ; 2003 Jan; 302(1-3):237-45. PubMed ID: 12526912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ speciation studies of copper-humic substances in a contaminated soil during electrokinetic remediation.
    Liu SH; Wang HP
    J Environ Qual; 2004; 33(4):1280-7. PubMed ID: 15254109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response of soil microbial communities to roxarsone pollution along a concentration gradient.
    Liu Y; Zhang Z; Li Y; Wen Y; Fei Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(9):819-827. PubMed ID: 28276888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Dynamics Simulations of the Standard Leonardite Humic Acid: Microscopic Analysis of the Structure and Dynamics.
    Petrov D; Tunega D; Gerzabek MH; Oostenbrink C
    Environ Sci Technol; 2017 May; 51(10):5414-5424. PubMed ID: 28440077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Residue and Degradation of Roxarsone in the System of Soil-Vegetable].
    Shao T; Yao CX; Shen YY; Zhang YJ; Su NN; Zhou SB
    Huan Jing Ke Xue; 2015 Aug; 36(8):3068-73. PubMed ID: 26592042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nature differences of humic acids fractions induced by extracted sequence as explanatory factors for binding characteristics of heavy metals.
    Shi W; Lü C; He J; En H; Gao M; Zhao B; Zhou B; Zhou H; Liu H; Zhang Y
    Ecotoxicol Environ Saf; 2018 Jun; 154():59-68. PubMed ID: 29454987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coupling metabolisms of arsenic and iron with humic substances through microorganisms in paddy soil.
    Yi XY; Yang YP; Yuan HY; Chen Z; Duan GL; Zhu YG
    J Hazard Mater; 2019 Jul; 373():591-599. PubMed ID: 30952004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Restoring biochemical activity and bacterial diversity in a trichloroethylene-contaminated soil: the reclamation effect of vermicomposted olive wastes.
    Moreno B; Vivas A; Nogales R; Macci C; Masciandaro G; Benitez E
    Environ Sci Pollut Res Int; 2009 May; 16(3):253-64. PubMed ID: 18751749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in organic matter composition caused by EDTA washing of two soils contaminated with toxic metals.
    Jez E; Bravo C; Lestan D; Gluhar S; Martin-Neto L; De Nobili M; Contin M
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65687-65699. PubMed ID: 34322798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinct response of arsenic speciation and bioavailability to different exogenous organic matter in paddy soil.
    Fang W; Yang D; Williams PN; Yang Y
    Chemosphere; 2022 Dec; 309(Pt 1):136653. PubMed ID: 36191771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The improvement of multi-contaminated sandy loam soil chemical and biological properties by the biochar, wood ash, and humic substances amendments.
    Pukalchik M; Mercl F; Panova M; Břendová K; Terekhova VA; Tlustoš P
    Environ Pollut; 2017 Oct; 229():516-524. PubMed ID: 28628867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequential extraction of labile and recalcitrant fractions of soil organic matter: A case study focusing on antimony (Sb) in humic acids, fulvic acids and humin fractions of long-term aged contaminated soils.
    Bagherifam S; Brown TC; Bagherifam S; Baglieri A
    Environ Pollut; 2023 Jun; 327():121610. PubMed ID: 37037279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.