BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37532205)

  • 1. Exogenous thiocyanate inhibits sulfurtransferase pathway and induces β-cyanoalanine synthase pathway to enhance exogenous cyanide assimilation in rice plants.
    Ullah A; Tian P; Zhang H; Yu XZ
    Chemosphere; 2023 Oct; 339():139683. PubMed ID: 37532205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of β-cyanoalanine synthase (β-CAS) and sulfurtransferase (ST) in cyanide (CN
    Feng YX; Li CZ; Lin YJ; Yu XZ
    Chemosphere; 2022 May; 294():133789. PubMed ID: 35101430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boron deficiency energizes cyanide uptake and assimilation through activating plasma membrane H
    Li CZ; Ullah A; Tian P; Yu XZ
    Chemosphere; 2024 Mar; 352():141290. PubMed ID: 38280649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the role of β-cyanoalanine synthase (CAS) in metabolism of free cyanide and ferri-cyanide by rice seedlings.
    Yu XZ; Lu PC; Yu Z
    Ecotoxicology; 2012 Mar; 21(2):548-56. PubMed ID: 22068263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implications of the fate of hydrogen sulfide derived from assimilation of thiocyanate in rice plants.
    Feng YX; Li CZ; Tian P; Yu XZ
    Chemosphere; 2022 Nov; 306():135500. PubMed ID: 35779683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A possible new mechanism involved in ferro-cyanide metabolism by plants.
    Yu XZ; Li F; Li K
    Environ Sci Pollut Res Int; 2011 Sep; 18(8):1343-50. PubMed ID: 21465162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the Michaelis-Menten kinetics and the genes expression involved in phyto-degradation of cyanide and ferri-cyanide.
    Yu XZ; Zhang XH
    Ecotoxicology; 2016 Jul; 25(5):888-99. PubMed ID: 26992391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased β-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis.
    O'Leary B; Preston GM; Sweetlove LJ
    Mol Plant; 2014 Jan; 7(1):231-43. PubMed ID: 23825089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of utilizing nitrate (NO
    Lin YJ; Feng YX; Yu XZ
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5622-5633. PubMed ID: 34424467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the significance of amino acids (AAs) in cyanide-treated rice plants under different nitrogen fertilization using the relative importance index of AA.
    Li CZ; Feng YX; Yu XZ
    Chemosphere; 2023 Jan; 312(Pt 1):137213. PubMed ID: 36370756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assimilation of exogenous cyanide cross talk in Oryza sativa L. to the key nodes in nitrogen metabolism.
    Li CZ; Yang L; Lin YJ; Zhang H; Rad S; Yu XZ
    Ecotoxicology; 2020 Nov; 29(9):1552-1564. PubMed ID: 32803565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and expression analysis of CYS-A1, CYS-C1, NIT4 genes in rice seedlings exposed to cyanide.
    Yu XZ; Lin YJ; Lu CJ; Zhang XH
    Ecotoxicology; 2017 Sep; 26(7):956-965. PubMed ID: 28623432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of exogenous thiocyanate on mineral nutrients, antioxidative responses and free amino acids in rice seedlings.
    Yu XZ; Zhang FZ
    Ecotoxicology; 2013 May; 22(4):752-60. PubMed ID: 23549985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome reveals the crucial role of exogenous hydrogen sulfide in alleviation of thiocyanate (SCN
    Tian P; Feng YX; Li YH
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):26901-26913. PubMed ID: 36374388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The β-cyanoalanine synthase pathway: beyond cyanide detoxification.
    Machingura M; Salomon E; Jez JM; Ebbs SD
    Plant Cell Environ; 2016 Oct; 39(10):2329-41. PubMed ID: 27116378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the mitochondrial respiratory components (Complex I and Complex III) as stimuli to induce oxidative damage in Oryza sativa L. under thiocyanate exposure.
    Lin YJ; Yu XZ; Li YH; Yang L
    Chemosphere; 2020 Mar; 243():125472. PubMed ID: 31995896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial-temporal variations of proline and related amino acids reveal distinct nitrogenous utilization strategies in rice during detoxification of exogenous cyanide.
    Feng YX; Li CZ; Yang L; Yu XZ
    Chem Biol Interact; 2023 Jan; 369():110267. PubMed ID: 36403783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the intricacies of the H
    Feng YX; Tian P; Li CZ; Hu XD; Lin YJ
    Ecotoxicol Environ Saf; 2024 May; 276():116307. PubMed ID: 38593497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of free amino acids in rice seedlings during cyanide metabolism.
    Yu XZ; Zhang XH; Liu W
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):1411-7. PubMed ID: 23907255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower sulfurtransferase detoxification rates of cyanide in konzo-A tropical spastic paralysis linked to cassava cyanogenic poisoning.
    Kambale KJ; Ali ER; Sadiki NH; Kayembe KP; Mvumbi LG; Yandju DL; Boivin MJ; Boss GR; Stadler DD; Lambert WE; Lasarev MR; Okitundu LA; Mumba Ngoyi D; Banea JP; Tshala-Katumbay DD
    Neurotoxicology; 2017 Mar; 59():256-262. PubMed ID: 27246648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.