These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 37532313)
1. An oral dsRNA delivery system based on chitosan induces G protein-coupled receptor kinase 2 gene silencing for Apolygus lucorum control. Qiao H; Zhao J; Wang X; Xiao L; Zhu-Salzman K; Lei J; Xu D; Xu G; Tan Y; Hao D Pestic Biochem Physiol; 2023 Aug; 194():105481. PubMed ID: 37532313 [TBL] [Abstract][Full Text] [Related]
2. Silencing of a LIM gene in cotton exhibits enhanced resistance against Apolygus lucorum. Liang S; Luo J; Alariqi M; Xu Z; Wang A; Zafar MN; Ren J; Wang F; Liu X; Xin Y; Xu H; Guo W; Wang Y; Ma W; Chen L; Lindsey K; Zhang X; Jin S J Cell Physiol; 2021 Aug; 236(8):5921-5936. PubMed ID: 33481281 [TBL] [Abstract][Full Text] [Related]
3. Gene cloning, protein expression, and enzymatic characterization of a double-stranded RNA degrading enzyme in Apolygus lucorum. Zhang JY; Zhao J; Zhu-Salzman K; Ji QQ; Jiang YP; Xiao LB; Xu DJ; Xu GC; Ge LQ; Tan YA Insect Sci; 2024 Feb; 31(1):119-133. PubMed ID: 37287390 [TBL] [Abstract][Full Text] [Related]
5. New Frontiers in Pest Control: Chitosan Nanoparticles-Shielded dsRNA as an Effective Topical RNAi Spray for Gram Podborer Biocontrol. Kolge H; Kadam K; Galande S; Lanjekar V; Ghormade V ACS Appl Bio Mater; 2021 Jun; 4(6):5145-5157. PubMed ID: 35006998 [TBL] [Abstract][Full Text] [Related]
6. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Ramesh Kumar D; Saravana Kumar P; Gandhi MR; Al-Dhabi NA; Paulraj MG; Ignacimuthu S Int J Biol Macromol; 2016 May; 86():89-95. PubMed ID: 26794313 [TBL] [Abstract][Full Text] [Related]
7. Double strand RNA delivery system for plant-sap-feeding insects. Ghosh SK; Hunter WB; Park AL; Gundersen-Rindal DE PLoS One; 2017; 12(2):e0171861. PubMed ID: 28182760 [TBL] [Abstract][Full Text] [Related]
8. Nanoparticle LDH enhances RNAi efficiency of dsRNA in piercing-sucking pests by promoting dsRNA stability and transport in plants. Cheng X; Zhou Q; Xiao J; Qin X; Zhang Y; Li X; Zheng W; Zhang H J Nanobiotechnology; 2024 Sep; 22(1):544. PubMed ID: 39237945 [TBL] [Abstract][Full Text] [Related]
9. Double-stranded RNA Oral Delivery Methods to Induce RNA Interference in Phloem and Plant-sap-feeding Hemipteran Insects. Ghosh SKB; Hunter WB; Park AL; Gundersen-Rindal DE J Vis Exp; 2018 May; (135):. PubMed ID: 29782023 [TBL] [Abstract][Full Text] [Related]
10. Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Gurusamy D; Mogilicherla K; Palli SR Arch Insect Biochem Physiol; 2020 Aug; 104(4):e21677. PubMed ID: 32291818 [TBL] [Abstract][Full Text] [Related]
11. Methods for Delivery of dsRNAs for Agricultural Pest Control: The Case of Lepidopteran Pests. Garbatti Factor B; de Moura Manoel Bento F; Figueira A Methods Mol Biol; 2022; 2360():317-345. PubMed ID: 34495524 [TBL] [Abstract][Full Text] [Related]
12. Topical delivery of dsRNA in two hemipteran species: Evaluation of RNAi specificity and non-target effects. Finetti L; Benetti L; Leyria J; Civolani S; Bernacchia G Pestic Biochem Physiol; 2023 Jan; 189():105295. PubMed ID: 36549821 [TBL] [Abstract][Full Text] [Related]
13. Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo. Wang K; Peng Y; Pu J; Fu W; Wang J; Han Z Insect Biochem Mol Biol; 2016 Oct; 77():1-9. PubMed ID: 27449967 [TBL] [Abstract][Full Text] [Related]
14. Functional analysis of two polygalacturonase genes in Apolygus lucorum associated with eliciting plant injury using RNA interference. Zhang W; Liu B; Lu Y; Liang G Arch Insect Biochem Physiol; 2017 Apr; 94(4):. PubMed ID: 28370316 [TBL] [Abstract][Full Text] [Related]
15. Effectiveness of orally-delivered double-stranded RNA on gene silencing in the stinkbug Plautia stali. Nishide Y; Kageyama D; Tanaka Y; Yokoi K; Jouraku A; Futahashi R; Fukatsu T PLoS One; 2021; 16(1):e0245081. PubMed ID: 33444324 [TBL] [Abstract][Full Text] [Related]
16. Comparison of strategies for enhancing RNA interference efficiency in Ostrinia nubilalis. Cooper AM; Song H; Yu Z; Biondi M; Bai J; Shi X; Ren Z; Weerasekara SM; Hua DH; Silver K; Zhang J; Zhu KY Pest Manag Sci; 2021 Feb; 77(2):635-645. PubMed ID: 33002336 [TBL] [Abstract][Full Text] [Related]
17. Identification and Expression Analysis of G Protein-Coupled Receptors in the Miridae Insect Gao H; Li Y; Wang M; Song X; Tang J; Feng F; Li B Front Endocrinol (Lausanne); 2021; 12():773669. PubMed ID: 34899608 [TBL] [Abstract][Full Text] [Related]
18. RNAi-mediated mortality in southern green stinkbug Nezara viridula by oral delivery of dsRNA. Sharma R; Christiaens O; Taning CN; Smagghe G Pest Manag Sci; 2021 Jan; 77(1):77-84. PubMed ID: 32696565 [TBL] [Abstract][Full Text] [Related]
19. RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications. Hoang BTL; Fletcher SJ; Brosnan CA; Ghodke AB; Manzie N; Mitter N Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743077 [TBL] [Abstract][Full Text] [Related]
20. Chitosan/dsRNA polyplex nanoparticles advance environmental RNA interference efficiency through activating clathrin-dependent endocytosis. Zhou H; Wan F; Jian Y; Guo F; Zhang M; Shi S; Yang L; Li S; Liu Y; Ding W Int J Biol Macromol; 2023 Dec; 253(Pt 4):127021. PubMed ID: 37741481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]