These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37532517)

  • 1. Tuberous Sclerosis Complex.
    Wataya-Kaneda M
    Keio J Med; 2023 Aug; ():. PubMed ID: 37532517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sirolimus relieves seizures and neuropsychiatric symptoms via changes of microglial polarity in tuberous sclerosis complex model mice.
    Koike-Kumagai M; Fujimoto M; Wataya-Kaneda M
    Neuropharmacology; 2022 Nov; 218():109203. PubMed ID: 35931213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Tuberous Sclerosis Complex].
    Kaneda M
    Brain Nerve; 2019 Apr; 71(4):374-379. PubMed ID: 30988224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upregulation of 6-phosphofructo-2-kinase (PFKFB3) by hyperactivated mammalian target of rapamycin complex 1 is critical for tumor growth in tuberous sclerosis complex.
    Wang Y; Tang S; Wu Y; Wan X; Zhou M; Li H; Zha X
    IUBMB Life; 2020 May; 72(5):965-977. PubMed ID: 31958214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Farnesyltransferase Inhibitor Restores Cognitive Deficits in
    Sugiura H; Shimada T; Moriya-Ito K; Goto JI; Fujiwara H; Ishii R; Shitara H; Taya C; Fujii S; Kobayashi T; Hino O; Worley PF; Yamagata K
    J Neurosci; 2022 Mar; 42(12):2598-2612. PubMed ID: 35121635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormal glycogen storage in tuberous sclerosis complex caused by impairment of mTORC1-dependent and -independent signaling pathways.
    Pal R; Xiong Y; Sardiello M
    Proc Natl Acad Sci U S A; 2019 Feb; 116(8):2977-2986. PubMed ID: 30728291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding a cure for tuberous sclerosis complex: From genetics through to targeted drug therapies.
    McEneaney LJ; Tee AR
    Adv Genet; 2019; 103():91-118. PubMed ID: 30904097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the mechanistic target of rapamycin induces cell survival via MAPK in tuberous sclerosis complex.
    Lu Y; Zhang EY; Liu J; Yu JJ
    Orphanet J Rare Dis; 2020 Aug; 15(1):209. PubMed ID: 32807195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex-based differences in neuropsychiatric symptoms are due to estradiol/ERα-dependent transcriptional regulation via the modulation of steroid levels by sirolimus.
    Koike-Kumagai M; Fujimoto M; Wataya-Kaneda M
    Pharmacol Biochem Behav; 2024 Sep; ():173875. PubMed ID: 39245213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian target of rapamycin and tuberous sclerosis complex.
    Wataya-Kaneda M
    J Dermatol Sci; 2015 Aug; 79(2):93-100. PubMed ID: 26051878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A circuitry and biochemical basis for tuberous sclerosis symptoms: from epilepsy to neurocognitive deficits.
    Feliciano DM; Lin TV; Hartman NW; Bartley CM; Kubera C; Hsieh L; Lafourcade C; O'Keefe RA; Bordey A
    Int J Dev Neurosci; 2013 Nov; 31(7):667-78. PubMed ID: 23485365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the pathogenesis and prevention of tuberous sclerosis-associated neuropsychiatric disorders (TAND).
    Gipson TT; Johnston MV
    F1000Res; 2017; 6():. PubMed ID: 28663780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mouse model of craniofacial bone lesion of tuberous sclerosis complex.
    Fang F; Wei X; Hu M; Liu F
    Musculoskelet Regen; 2015; 1(1):. PubMed ID: 26052552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of the treatment options for epilepsy in tuberous sclerosis complex: towards precision medicine.
    Schubert-Bast S; Strzelczyk A
    Ther Adv Neurol Disord; 2021; 14():17562864211031100. PubMed ID: 34349839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translatome analysis of Tuberous Sclerosis Complex-1 patient-derived neural progenitor cells reveal rapamycin-dependent and independent alterations.
    Aksoylu IS; Martin P; Robert F; Szkop KJ; Redmond NE; Chen S; Beauchamp RL; Nobeli I; Pelletier J; Larsson O; Ramesh V
    Res Sq; 2023 Mar; ():. PubMed ID: 37034588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex.
    Hino O; Kobayashi T
    Cancer Sci; 2017 Jan; 108(1):5-11. PubMed ID: 27862655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mTORC1 enhancement of STIM1-mediated store-operated Ca2+ entry constrains tuberous sclerosis complex-related tumor development.
    Peng H; Liu J; Sun Q; Chen R; Wang Y; Duan J; Li C; Li B; Jing Y; Chen X; Mao Q; Xu KF; Walker CL; Li J; Wang J; Zhang H
    Oncogene; 2013 Sep; 32(39):4702-11. PubMed ID: 23108404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bama miniature pig model of monoallelic TSC1 mutation for human tuberous sclerosis complex.
    Li X; Hu T; Liu J; Fang B; Geng X; Xiong Q; Zhang L; Jin Y; Liu X; Li L; Wang Y; Li R; Bai X; Yang H; Dai Y
    J Genet Genomics; 2020 Dec; 47(12):735-742. PubMed ID: 33612456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The paradox of autophagy in Tuberous Sclerosis Complex.
    Reis LB; Filippi-Chiela EC; Ashton-Prolla P; Visioli F; Rosset C
    Genet Mol Biol; 2021; 44(2):e20200014. PubMed ID: 33821877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling.
    Martin P; Wagh V; Reis SA; Erdin S; Beauchamp RL; Shaikh G; Talkowski M; Thiele E; Sheridan SD; Haggarty SJ; Ramesh V
    Mol Autism; 2020; 11(1):2. PubMed ID: 31921404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.