These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37532675)

  • 1. Use of Hydrothermal Carbonization to Improve the Performance of Biowaste-Derived Hard Carbons in Sodium Ion-Batteries.
    Nieto N; Porte J; Saurel D; Djuandhi L; Sharma N; Lopez-Urionabarrenechea A; Palomares V; Rojo T
    ChemSusChem; 2023 Dec; 16(23):e202301053. PubMed ID: 37532675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method.
    Canbaz E; Aydin M; Demir-Çakan R
    Turk J Chem; 2022; 46(2):356-366. PubMed ID: 38143474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermally Assisted Conversion of Switchgrass into Hard Carbon as Anode Materials for Sodium-Ion Batteries.
    Li Y; Xia D; Tao L; Xu Z; Yu D; Jin Q; Lin F; Huang H
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28461-28472. PubMed ID: 38780280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of green high-performance biomass-derived hard carbon materials from bamboo powder waste.
    Yin T; Zhang Z; Xu L; Li C; Han D
    ChemistryOpen; 2024 May; 13(5):e202300178. PubMed ID: 38214441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous hard carbon spheres derived from biomass for high-performance sodium/potassium-ion batteries.
    Chen S; Tang K; Song F; Liu Z; Zhang N; Lan S; Xie X; Wu Z
    Nanotechnology; 2021 Nov; 33(5):. PubMed ID: 34670206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for Sodium-Ion Batteries.
    Wang Y; Feng Z; Zhu W; Gariépy V; Gagnon C; Provencher M; Laul D; Veillette R; Trudeau ML; Guerfi A; Zaghib K
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30050008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries.
    Wu F; Zhang M; Bai Y; Wang X; Dong R; Wu C
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12554-12561. PubMed ID: 30875192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries.
    Dou X; Hasa I; Hekmatfar M; Diemant T; Behm RJ; Buchholz D; Passerini S
    ChemSusChem; 2017 Jun; 10(12):2668-2676. PubMed ID: 28425668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Jute-Fiber Precursor-Derived Low-Cost Sustainable Hard Carbon with Varying Micro/Mesoporosity and Distinct Storage Mechanisms for Sodium-Ion and Potassium-Ion Batteries.
    ; Verma P; Puravankara S
    Langmuir; 2022 Dec; 38(50):15703-15713. PubMed ID: 36490218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A life cycle assessment of hard carbon anodes for sodium-ion batteries.
    Liu H; Xu Z; Guo Z; Feng J; Li H; Qiu T; Titirici M
    Philos Trans A Math Phys Eng Sci; 2021 Nov; 379(2209):20200340. PubMed ID: 34510922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries.
    Wang K; Jin Y; Sun S; Huang Y; Peng J; Luo J; Zhang Q; Qiu Y; Fang C; Han J
    ACS Omega; 2017 Apr; 2(4):1687-1695. PubMed ID: 31457533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Carbonization Temperature to Create Closed Pores for Hard Carbon as High-Performance Sodium-Ion Battery Anodes.
    Zhang X; Cao Y; Li G; Liu G; Dong X; Wang Y; Jiang X; Zhang X; Xia Y
    Small; 2024 Apr; ():e2311197. PubMed ID: 38593375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-Oxidation Strategy Transforming Waste Foam to Hard Carbon Anodes for Boosting Sodium Storage Performance.
    Chen Y; Sun H; He XX; Chen Q; Zhao JH; Wei Y; Wu X; Zhang Z; Jiang Y; Chou SL
    Small; 2024 Mar; 20(12):e2307132. PubMed ID: 37946700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery.
    Zhang H; Ming H; Zhang W; Cao G; Yang Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23766-23774. PubMed ID: 28650143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Beneficial Impact of Mineral Content in Spent-Coffee-Ground-Derived Hard Carbon on Sodium-Ion Storage.
    Harizanova S; Uzunov I; Aleksandrov L; Shipochka M; Spassova I; Kalapsazova M
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the Superior Performance of Hard Carbon Anodes in Sodium-Ion Compared With Lithium- and Potassium-Ion Batteries.
    Guo Z; Xu Z; Xie F; Jiang J; Zheng K; Alabidun S; Crespo-Ribadeneyra M; Hu YS; Au H; Titirici MM
    Adv Mater; 2023 Oct; 35(42):e2304091. PubMed ID: 37501223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure Dependent Electrochemical Behaviors of Hard Carbon Anode Materials Derived from Natural Polymer for Next-Generation Sodium Ion Battery.
    Kim J; Han SD; Koo B; Lee SH; Yang J
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peat-derived hard carbon electrodes with superior capacity for sodium-ion batteries.
    Adamson A; Väli R; Paalo M; Aruväli J; Koppel M; Palm R; Härk E; Nerut J; Romann T; Lust E; Jänes A
    RSC Adv; 2020 May; 10(34):20145-20154. PubMed ID: 35520424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hard-Carbon Negative Electrodes from Biomasses for Sodium-Ion Batteries.
    Lu B; Lin C; Xiong H; Zhang C; Fang L; Sun J; Hu Z; Wu Y; Fan X; Li G; Fu J; Deng D; Wu Q
    Molecules; 2023 May; 28(10):. PubMed ID: 37241775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomass-Derived Hard Carbon with Interlayer Spacing Optimization toward Ultrastable Na-Ion Storage.
    Hou Z; Lei D; Jiang M; Gao Y; Zhang X; Zhang Y; Wang JG
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1367-1375. PubMed ID: 36576060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.