These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 37532828)
1. Interannual climate variability improves niche estimates for ectothermic but not endothermic species. Karger DN; Saladin B; Wüest RO; Graham CH; Zurell D; Mo L; Zimmermann NE Sci Rep; 2023 Aug; 13(1):12538. PubMed ID: 37532828 [TBL] [Abstract][Full Text] [Related]
2. Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change. Lu WX; Wang ZZ; Hu XY; Rao GY Sci Total Environ; 2024 Feb; 912():169501. PubMed ID: 38145682 [TBL] [Abstract][Full Text] [Related]
3. Potential breeding distributions of U.S. birds predicted with both short-term variability and long-term average climate data. Bateman BL; Pidgeon AM; Radeloff VC; Flather CH; VanDerWal J; Akçakaya HR; Thogmartin WE; Albright TP; Vavrus SJ; Heglund PJ Ecol Appl; 2016 Dec; 26(8):2718-2729. PubMed ID: 27907262 [TBL] [Abstract][Full Text] [Related]
4. Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog. Uribe-Rivera DE; Soto-Azat C; Valenzuela-Sánchez A; Bizama G; Simonetti JA; Pliscoff P Ecol Appl; 2017 Jul; 27(5):1633-1645. PubMed ID: 28397328 [TBL] [Abstract][Full Text] [Related]
5. Climatic extremes improve predictions of spatial patterns of tree species. Zimmermann NE; Yoccoz NG; Edwards TC; Meier ES; Thuiller W; Guisan A; Schmatz DR; Pearman PB Proc Natl Acad Sci U S A; 2009 Nov; 106 Suppl 2(Suppl 2):19723-8. PubMed ID: 19897732 [TBL] [Abstract][Full Text] [Related]
6. Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis. Baldanzi S; Weidberg NF; Fusi M; Cannicci S; McQuaid CD; Porri F Oecologia; 2015 Dec; 179(4):1067-78. PubMed ID: 26232091 [TBL] [Abstract][Full Text] [Related]
7. The influence of scale-dependent geodiversity on species distribution models in a biodiversity hotspot. Gerstner BE; Blair ME; Bills P; Cruz-Rodriguez CA; Zarnetske PL Philos Trans A Math Phys Eng Sci; 2024 Apr; 382(2269):20230057. PubMed ID: 38342213 [TBL] [Abstract][Full Text] [Related]
8. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. Allyn AJ; Alexander MA; Franklin BS; Massiot-Granier F; Pershing AJ; Scott JD; Mills KE PLoS One; 2020; 15(4):e0231595. PubMed ID: 32298349 [TBL] [Abstract][Full Text] [Related]
9. Drivers of distributions and niches of North American cold-adapted amphibians: evaluating both climate and land use. Seaborn T; Goldberg CS; Crespi EJ Ecol Appl; 2021 Mar; 31(2):e2236. PubMed ID: 33052615 [TBL] [Abstract][Full Text] [Related]
10. How many species will Earth lose to climate change? Wiens JJ; Zelinka J Glob Chang Biol; 2024 Jan; 30(1):e17125. PubMed ID: 38273487 [TBL] [Abstract][Full Text] [Related]
11. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach. Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878 [TBL] [Abstract][Full Text] [Related]
12. Adaptation to climate change through seasonal migration revealed by climatic versus demographic niche models. Carbeck K; Wang T; Reid JM; Arcese P Glob Chang Biol; 2022 Jul; 28(14):4260-4275. PubMed ID: 35366358 [TBL] [Abstract][Full Text] [Related]
13. Biological invasions reveal how niche change affects the transferability of species distribution models. Liu C; Wolter C; Courchamp F; Roura-Pascual N; Jeschke JM Ecology; 2022 Aug; 103(8):e3719. PubMed ID: 35388469 [TBL] [Abstract][Full Text] [Related]
14. Predicting daily activity time through ecological niche modelling and microclimatic data. Toro-Cardona FA; Parra JL; Rojas-Soto OR J Anim Ecol; 2023 Apr; 92(4):925-935. PubMed ID: 36744653 [TBL] [Abstract][Full Text] [Related]
15. Tracking of climatic niche boundaries under recent climate change. La Sorte FA; Jetz W J Anim Ecol; 2012 Jul; 81(4):914-25. PubMed ID: 22372840 [TBL] [Abstract][Full Text] [Related]
16. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts. Crase B; Liedloff A; Vesk PA; Fukuda Y; Wintle BA Glob Chang Biol; 2014 Aug; 20(8):2566-79. PubMed ID: 24845950 [TBL] [Abstract][Full Text] [Related]
17. Incorporating plant phenological responses into species distribution models reduces estimates of future species loss and turnover. Peng S; Ramirez-Parada TH; Mazer SJ; Record S; Park I; Ellison AM; Davis CC New Phytol; 2024 Jun; 242(5):2338-2352. PubMed ID: 38531810 [TBL] [Abstract][Full Text] [Related]
18. Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Hu ZM; Zhang QS; Zhang J; Kass JM; Mammola S; Fresia P; Draisma SGA; Assis J; Jueterbock A; Yokota M; Zhang Z Mol Ecol; 2021 Aug; 30(15):3840-3855. PubMed ID: 34022079 [TBL] [Abstract][Full Text] [Related]
19. Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula. Koo KA; Kong WS; Nibbelink NP; Hopkinson CS; Lee JH PLoS One; 2015; 10(8):e0134043. PubMed ID: 26262755 [TBL] [Abstract][Full Text] [Related]
20. Niche differentiation between deeply divergent phylogenetic lineages of an endemic newt: implications for Species Distribution Models. Peñalver-Alcázar M; Jiménez-Valverde A; Aragón P Zoology (Jena); 2021 Feb; 144():125852. PubMed ID: 33197786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]