These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 37532958)
1. The soil pore structure encountered by roots affects plant-derived carbon inputs and fate. Lucas M; Santiago JP; Chen J; Guber A; Kravchenko A New Phytol; 2023 Oct; 240(2):515-528. PubMed ID: 37532958 [TBL] [Abstract][Full Text] [Related]
2. Soil pore characteristics and the fate of new switchgrass-derived carbon in switchgrass and prairie bioenergy cropping systems. Kim K; Juyal A; Kravchenko A Sci Rep; 2024 Apr; 14(1):7824. PubMed ID: 38570696 [TBL] [Abstract][Full Text] [Related]
3. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Pausch J; Kuzyakov Y Glob Chang Biol; 2018 Jan; 24(1):1-12. PubMed ID: 28752603 [TBL] [Abstract][Full Text] [Related]
4. Cover crop root morphology rather than quality controls the fate of root and rhizodeposition C into distinct soil C pools. Engedal T; Magid J; Hansen V; Rasmussen J; Sørensen H; Stoumann Jensen L Glob Chang Biol; 2023 Oct; 29(19):5677-5690. PubMed ID: 37522370 [TBL] [Abstract][Full Text] [Related]
5. Nitrogen addition and defoliation alter belowground carbon allocation with consequences for plant nitrogen uptake and soil organic carbon decomposition. Bicharanloo B; Bagheri Shirvan M; Cavagnaro TR; Keitel C; Dijkstra FA Sci Total Environ; 2022 Nov; 846():157430. PubMed ID: 35863579 [TBL] [Abstract][Full Text] [Related]
6. Soil Origin and Plant Genotype Modulate Switchgrass Aboveground Productivity and Root Microbiome Assembly. Beschoren da Costa P; Benucci GMN; Chou MY; Van Wyk J; Chretien M; Bonito G mBio; 2022 Apr; 13(2):e0007922. PubMed ID: 35384699 [TBL] [Abstract][Full Text] [Related]
7. Cover crop influence on pore size distribution and biopore dynamics: Enumerating root and soil faunal effects. Lucas M; Nguyen LTT; Guber A; Kravchenko AN Front Plant Sci; 2022; 13():928569. PubMed ID: 36160999 [TBL] [Abstract][Full Text] [Related]
8. Pore architecture and particulate organic matter in soils under monoculture switchgrass and restored prairie in contrasting topography. Juyal A; Guber A; Oerther M; Quigley M; Kravchenko A Sci Rep; 2021 Nov; 11(1):21998. PubMed ID: 34754048 [TBL] [Abstract][Full Text] [Related]
9. Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Keller AB; Brzostek ER; Craig ME; Fisher JB; Phillips RP Ecol Lett; 2021 Apr; 24(4):626-635. PubMed ID: 33492775 [TBL] [Abstract][Full Text] [Related]
10. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. Sokol NW; Kuebbing SE; Karlsen-Ayala E; Bradford MA New Phytol; 2019 Jan; 221(1):233-246. PubMed ID: 30067293 [TBL] [Abstract][Full Text] [Related]
11. The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface. Helliwell JR; Sturrock CJ; Mairhofer S; Craigon J; Ashton RW; Miller AJ; Whalley WR; Mooney SJ Sci Rep; 2017 Nov; 7(1):14875. PubMed ID: 29093533 [TBL] [Abstract][Full Text] [Related]
12. Imaging microstructure of the barley rhizosphere: particle packing and root hair influences. Koebernick N; Daly KR; Keyes SD; Bengough AG; Brown LK; Cooper LJ; George TS; Hallett PD; Naveed M; Raffan A; Roose T New Phytol; 2019 Mar; 221(4):1878-1889. PubMed ID: 30289555 [TBL] [Abstract][Full Text] [Related]
13. Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight. Liu TY; Chen MX; Zhang Y; Zhu FY; Liu YG; Tian Y; Fernie AR; Ye N; Zhang J Planta; 2019 Oct; 250(4):1355-1369. PubMed ID: 31278465 [TBL] [Abstract][Full Text] [Related]
14. Topographic and soil influences on root productivity of three bioenergy cropping systems. Ontl TA; Hofmockel KS; Cambardella CA; Schulte LA; Kolka RK New Phytol; 2013 Aug; 199(3):727-37. PubMed ID: 23692583 [TBL] [Abstract][Full Text] [Related]
15. Effects of nitrogen fertilization and bioenergy crop type on topsoil organic carbon and total Nitrogen contents in middle Tennessee USA. Li J; Jian S; Lane CS; Lu Y; He X; Wang G; Mayes MA; Dzantor KE; Hui D PLoS One; 2020; 15(3):e0230688. PubMed ID: 32226037 [TBL] [Abstract][Full Text] [Related]
16. Nutrients and defoliation increase soil carbon inputs in grassland. Ziter C; MacDougall AS Ecology; 2013 Jan; 94(1):106-16. PubMed ID: 23600245 [TBL] [Abstract][Full Text] [Related]
17. Plant Diversity and Fertilizer Management Shape the Belowground Microbiome of Native Grass Bioenergy Feedstocks. Revillini D; Wilson GWT; Miller RM; Lancione R; Johnson NC Front Plant Sci; 2019; 10():1018. PubMed ID: 31475019 [TBL] [Abstract][Full Text] [Related]
18. Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland. Wilson CH; Strickland MS; Hutchings JA; Bianchi TS; Flory SL Glob Chang Biol; 2018 Jul; 24(7):2997-3009. PubMed ID: 29377461 [TBL] [Abstract][Full Text] [Related]
19. Allometric constraints on, and trade-offs in, belowground carbon allocation and their control of soil respiration across global forest ecosystems. Chen G; Yang Y; Robinson D Glob Chang Biol; 2014 May; 20(5):1674-84. PubMed ID: 24847507 [TBL] [Abstract][Full Text] [Related]
20. Carbon footprint of perennial bioenergy crop production receiving various nitrogen fertilization rates. Sainju UM; Allen BL Sci Total Environ; 2023 Feb; 861():160663. PubMed ID: 36473662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]