These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 37533451)

  • 1. Swine gut microbiome associated with non-digestible carbohydrate utilization.
    Pandey S; Kim ES; Cho JH; Song M; Doo H; Kim S; Keum GB; Kwak J; Ryu S; Choi Y; Kang J; Lee JJ; Kim HB
    Front Vet Sci; 2023; 10():1231072. PubMed ID: 37533451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures and characteristics of carbohydrates in diets fed to pigs: a review.
    Navarro DMDL; Abelilla JJ; Stein HH
    J Anim Sci Biotechnol; 2019; 10():39. PubMed ID: 31049199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of non-digestible carbohydrates in the gut microbiome.
    Rastall RA; Diez-Municio M; Forssten SD; Hamaker B; Meynier A; Moreno FJ; Respondek F; Stahl B; Venema K; Wiese M
    Benef Microbes; 2022 Jun; 13(2):95-168. PubMed ID: 35729770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of dietary fibre on nutrient digestibility and energy utilisation in growing pigs fed diets varying in soluble and insoluble fibres from co-products.
    Lee GI; Hedemann MS; Jørgensen H; Bach Knudsen KE
    Animal; 2022 May; 16(5):100511. PubMed ID: 35436646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-digestible carbohydrates in practice.
    Grabitske HA; Slavin JL
    J Am Diet Assoc; 2008 Oct; 108(10):1677-81. PubMed ID: 18926133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial degradation of complex carbohydrates in the gut.
    Flint HJ; Scott KP; Duncan SH; Louis P; Forano E
    Gut Microbes; 2012; 3(4):289-306. PubMed ID: 22572875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shaping the Infant Microbiome With Non-digestible Carbohydrates.
    Verkhnyatskaya S; Ferrari M; de Vos P; Walvoort MTC
    Front Microbiol; 2019; 10():343. PubMed ID: 30858844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary citrus pectin drives more ileal microbial protein metabolism and stronger fecal carbohydrate fermentation over fructo-oligosaccharide in growing pigs.
    Zhang Y; Mu C; Liu S; Zhu W
    Anim Nutr; 2022 Dec; 11():252-263. PubMed ID: 36263407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Nutritional Significance of Intestinal Fungi: Alteration of Dietary Carbohydrate Composition Triggers Colonic Fungal Community Shifts in a Pig Model.
    Luo Y; Li J; Zhou H; Yu B; He J; Wu A; Huang Z; Zheng P; Mao X; Yu J; Li H; Wang H; Wang Q; Yan H; Chen D
    Appl Environ Microbiol; 2021 Apr; 87(10):. PubMed ID: 33712429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy.
    Gamage IH; Jonker A; Zhang X; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():407-21. PubMed ID: 24076457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential anti-obesogenic properties of non-digestible carbohydrates: specific focus on resistant dextrin.
    Hobden MR; Guérin-Deremaux L; Rowland I; Gibson GR; Kennedy OB
    Proc Nutr Soc; 2015 Aug; 74(3):258-67. PubMed ID: 25721052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive effects of protein and carbohydrates on production of microbial metabolites in the large intestine of growing pigs.
    Taciak M; Barszcz M; Święch E; Tuśnio A; Bachanek I
    Arch Anim Nutr; 2017 Jun; 71(3):192-209. PubMed ID: 28429993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polysaccharide source altered ecological network, functional profile, and short-chain fatty acid production in a porcine gut microbiota.
    Long C; de Vries S; Venema K
    Benef Microbes; 2020 Oct; 11(6):591-610. PubMed ID: 32936008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential of resistant starch as a prebiotic.
    Zaman SA; Sarbini SR
    Crit Rev Biotechnol; 2016; 36(3):578-84. PubMed ID: 25582732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates.
    Elia M; Cummings JH
    Eur J Clin Nutr; 2007 Dec; 61 Suppl 1():S40-74. PubMed ID: 17992186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Food carbohydrates in the gut: structural diversity, microbial utilization, and analytical strategies.
    Lee H; Song J; Lee B; Cha J; Lee H
    Food Sci Biotechnol; 2024 Jul; 33(9):2123-2140. PubMed ID: 39130670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consumption of non-digestible oligosaccharides elevates colonic alkaline phosphatase activity by up-regulating the expression of IAP-I, with increased mucins and microbial fermentation in rats fed a high-fat diet.
    Okazaki Y; Katayama T
    Br J Nutr; 2019 Jan; 121(2):146-154. PubMed ID: 30400998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of a diet rich in resistant starch on the degradation of non-starch polysaccharides in the large intestine of pigs.
    Jonathan MC; Haenen D; Souza da Silva C; Bosch G; Schols HA; Gruppen H
    Carbohydr Polym; 2013 Mar; 93(1):232-9. PubMed ID: 23465924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of different carbohydrates on in vitro fermentation activity and bacterial numbers of porcine inocula under osmotic stress conditions.
    Rink F; Bauer E; Eklund M; Mosenthin R
    Arch Anim Nutr; 2011 Dec; 65(6):445-59. PubMed ID: 22256675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food Starch Structure Impacts Gut Microbiome Composition.
    Warren FJ; Fukuma NM; Mikkelsen D; Flanagan BM; Williams BA; Lisle AT; Ó Cuív P; Morrison M; Gidley MJ
    mSphere; 2018; 3(3):. PubMed ID: 29769378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.