These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37533818)

  • 1. Conservation of thermal physiology in tropical intertidal snails following an evolutionary transition to a cooler ecosystem: climate change implications.
    Marshall DJ; Mustapha N; Monaco CJ
    Conserv Physiol; 2023; 11(1):coad056. PubMed ID: 37533818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal tolerance and climate warming sensitivity in tropical snails.
    Marshall DJ; Rezende EL; Baharuddin N; Choi F; Helmuth B
    Ecol Evol; 2015 Dec; 5(24):5905-19. PubMed ID: 26811764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gross mismatch between thermal tolerances and environmental temperatures in a tropical freshwater snail: climate warming and evolutionary implications.
    Polgar G; Khang TF; Chua T; Marshall DJ
    J Therm Biol; 2015 Jan; 47():99-108. PubMed ID: 25526660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why are 'suboptimal' temperatures preferred in a tropical intertidal ectotherm?
    Hui TY; Crickenberger S; Lau JWT; Williams GA
    J Anim Ecol; 2022 Jul; 91(7):1400-1415. PubMed ID: 35302242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-reversible and Reversible Heat Tolerance Plasticity in Tropical Intertidal Animals: Responding to Habitat Temperature Heterogeneity.
    Brahim A; Mustapha N; Marshall DJ
    Front Physiol; 2018; 9():1909. PubMed ID: 30692933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in heat tolerance plasticity between supratidal and intertidal snails indicate complex responses to microhabitat temperature variation.
    Brahim A; Marshall DJ
    J Therm Biol; 2020 Jul; 91():102620. PubMed ID: 32716870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-buffering by oyster habitat provides temporal stability for rocky shore communities.
    McAfee D; Bishop MJ; Williams GA
    Mar Environ Res; 2022 Jan; 173():105536. PubMed ID: 34864513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles.
    Frishkoff LO; Hadly EA; Daily GC
    Glob Chang Biol; 2015 Nov; 21(11):3901-16. PubMed ID: 26148337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal evolution of life history and heat tolerance during range expansions toward warmer and cooler regions.
    Carbonell JA; Stoks R
    Ecology; 2020 Oct; 101(10):e03134. PubMed ID: 32691873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Regulation, Oxygen Limitation and Heat Tolerance in a Subtidal Marine Gastropod Reveal the Complexity of Predicting Climate Change Vulnerability.
    Marshall DJ; McQuaid CD
    Front Physiol; 2020; 11():1106. PubMed ID: 33101046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments.
    Chen Z; Farrell AP; Matala A; Narum SR
    Mol Ecol; 2018 Feb; 27(3):659-674. PubMed ID: 29290103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climatic stability, not average habitat temperature, determines thermal tolerance of subterranean beetles.
    Colado R; Pallarés S; Fresneda J; Mammola S; Rizzo V; Sánchez-Fernández D
    Ecology; 2022 Apr; 103(4):e3629. PubMed ID: 35018629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Where three snail species attach while emersed in relation to heterogenous substrate temperatures underneath intertidal boulders.
    Janetzki N; Benkendorff K; Fairweather PG
    PeerJ; 2021; 9():e11675. PubMed ID: 34285831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species.
    MacLean HJ; Sørensen JG; Kristensen TN; Loeschcke V; Beedholm K; Kellermann V; Overgaard J
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180548. PubMed ID: 31203763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response to thermal and hydric regimes point to differential inter- and intraspecific vulnerability of tropical amphibians to climate warming.
    Delgado-Suazo P; Burrowes PA
    J Therm Biol; 2022 Jan; 103():103148. PubMed ID: 35027199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooler performance breadth in a viviparous skink relative to its oviparous congener.
    Landry Yuan F; Pickett EJ; Bonebrake TC
    J Therm Biol; 2016 Oct; 61():106-114. PubMed ID: 27712651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substantial heat tolerance acclimation capacity in tropical thermophilic snails, but to what benefit?
    Marshall DJ; Brahim A; Mustapha N; Dong Y; Sinclair BJ
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30291160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Latitudinal gradients in ecosystem engineering by oysters vary across habitats.
    McAfee D; Cole VJ; Bishop MJ
    Ecology; 2016 Apr; 97(4):929-39. PubMed ID: 27220209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Heat Tolerance Is Negatively Correlated with Heat Tolerance Plasticity in Nudibranch Mollusks.
    Armstrong EJ; Tanner RL; Stillman JH
    Physiol Biochem Zool; 2019; 92(4):430-444. PubMed ID: 31192766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.