These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37533864)

  • 1. A comparison of the binding sites of antibodies and single-domain antibodies.
    Gordon GL; Capel HL; Guloglu B; Richardson E; Stafford RL; Deane CM
    Front Immunol; 2023; 14():1231623. PubMed ID: 37533864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antigen recognition by single-domain antibodies: structural latitudes and constraints.
    Henry KA; MacKenzie CR
    MAbs; 2018; 10(6):815-826. PubMed ID: 29916758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research progress on unique paratope structure, antigen binding modes, and systematic mutagenesis strategies of single-domain antibodies.
    Liu C; Lin H; Cao L; Wang K; Sui J
    Front Immunol; 2022; 13():1059771. PubMed ID: 36479130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the binding loops configuration and surface adaptation of different crystallized single-domain antibodies in response to various antigens.
    Al Qaraghuli MM; Ferro VA
    J Mol Recognit; 2017 Apr; 30(4):. PubMed ID: 27862476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serum immunoglobulin or albumin binding single-domain antibodies that enable tailored half-life extension of biologics in multiple animal species.
    Harmsen MM; Ackerschott B; de Smit H
    Front Immunol; 2024; 15():1346328. PubMed ID: 38352869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-domain antibodies as therapeutics for solid tumor treatment.
    Wang M; Ying T; Wu Y
    Acta Pharm Sin B; 2024 Jul; 14(7):2854-2868. PubMed ID: 39027249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coevolved Canonical Loops Conformations of Single-Domain Antibodies: A Tale of Three Pockets Playing Musical Chairs.
    Gaudreault F; Corbeil CR; Purisima EO; Sulea T
    Front Immunol; 2022; 13():884132. PubMed ID: 35720356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibody and antigen contact residues define epitope and paratope size and structure.
    Stave JW; Lindpaintner K
    J Immunol; 2013 Aug; 191(3):1428-35. PubMed ID: 23797669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunogenicity and humanization of single-domain antibodies.
    Rossotti MA; Bélanger K; Henry KA; Tanha J
    FEBS J; 2022 Jul; 289(14):4304-4327. PubMed ID: 33751827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of the complementarity determining regions to the thermal stability of a single-domain antibody.
    Zabetakis D; Anderson GP; Bayya N; Goldman ER
    PLoS One; 2013; 8(10):e77678. PubMed ID: 24143255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paratope Duality and Gullying are Among the Atypical Recognition Mechanisms Used by a Trio of Nanobodies to Differentiate Ebolavirus Nucleoproteins.
    Sherwood LJ; Taylor AB; Hart PJ; Hayhurst A
    J Mol Biol; 2019 Dec; 431(24):4848-4867. PubMed ID: 31626803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Basis of Epitope Recognition by Heavy-Chain Camelid Antibodies.
    Zavrtanik U; Lukan J; Loris R; Lah J; Hadži S
    J Mol Biol; 2018 Oct; 430(21):4369-4386. PubMed ID: 30205092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-domain antibodies and their utility.
    Baral TN; MacKenzie R; Arbabi Ghahroudi M
    Curr Protoc Immunol; 2013 Nov; 103():2.17.1-2.17.57. PubMed ID: 24510545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural trends in antibody-antigen binding interfaces: a computational analysis of 1833 experimentally determined 3D structures.
    Madsen AV; Mejias-Gomez O; Pedersen LE; Preben Morth J; Kristensen P; Jenkins TP; Goletz S
    Comput Struct Biotechnol J; 2024 Dec; 23():199-211. PubMed ID: 38161735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origins of specificity and affinity in antibody-protein interactions.
    Peng HP; Lee KH; Jian JW; Yang AS
    Proc Natl Acad Sci U S A; 2014 Jul; 111(26):E2656-65. PubMed ID: 24938786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single domain antibodies for the knockdown of cytosolic and nuclear proteins.
    Böldicke T
    Protein Sci; 2017 May; 26(5):925-945. PubMed ID: 28271570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection and characterization of single domain antibodies against human CD20.
    Liu JL; Zabetakis D; Goldman ER; Anderson GP
    Mol Immunol; 2016 Oct; 78():146-154. PubMed ID: 27639717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of synthetic light-chain antibodies as novel and potent HIV fusion inhibitors.
    Cunha-Santos C; Figueira TN; Borrego P; Oliveira SS; Rocha C; Couto A; Cantante C; Santos-Costa Q; Azevedo-Pereira JM; Fontes CM; Taveira N; Aires-Da-Silva F; Castanho MA; Veiga AS; Goncalves J
    AIDS; 2016 Jul; 30(11):1691-701. PubMed ID: 27058352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection, characterization, and CDR shuffling of naive llama single-domain antibodies selected against auxin and their cross-reactivity with auxinic herbicides from four chemical families.
    Sheedy C; Yau KY; Hirama T; MacKenzie CR; Hall JC
    J Agric Food Chem; 2006 May; 54(10):3668-78. PubMed ID: 19127743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single domain antibodies targeting pathological tau protein: Influence of four IgG subclasses on efficacy and toxicity.
    Congdon EE; Pan R; Jiang Y; Sandusky-Beltran LA; Dodge A; Lin Y; Liu M; Kuo MH; Kong XP; Sigurdsson EM
    EBioMedicine; 2022 Oct; 84():104249. PubMed ID: 36099813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.