These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 3753395)
1. Effect of calmodulin antagonists on hypoxia and reoxygenation damage in isolated rabbit hearts. Beresewicz A; Karwatowska-Kryńska E Basic Res Cardiol; 1986; 81(3):311-25. PubMed ID: 3753395 [TBL] [Abstract][Full Text] [Related]
2. Trifluoperazine protection of hypoxic myocardium. Karwatowska-Kryńska E; Beresewicz A Pol J Pharmacol Pharm; 1985; 37(5):615-27. PubMed ID: 3832010 [TBL] [Abstract][Full Text] [Related]
3. Effect of locally released catecholamines on lipolysis and injury of the hypoxic isolated rabbit heart. Karwatowska-Kryńska E; Beresewicz A J Mol Cell Cardiol; 1983 Aug; 15(8):523-36. PubMed ID: 6672209 [TBL] [Abstract][Full Text] [Related]
4. Effect of hypoxia and reoxygenation on the isolated rabbit heart determined by monoclonal antimyosin antibody uptake. Kilgore KS; Lucchesi BR Cardiovasc Res; 1993 Jul; 27(7):1260-7. PubMed ID: 8252587 [TBL] [Abstract][Full Text] [Related]
5. Anti-ischemic and membrane stabilizing activity of calmodulin inhibitors. Beresewicz A Basic Res Cardiol; 1989; 84(6):631-45. PubMed ID: 2619700 [TBL] [Abstract][Full Text] [Related]
6. Energy dependence of enzyme release from hypoxic isolated perfused rat heart tissue. Kehrer JP; Park Y; Sies H J Appl Physiol (1985); 1988 Oct; 65(4):1855-60. PubMed ID: 3182545 [TBL] [Abstract][Full Text] [Related]
7. Effect of perfusion pressure at reoxygenation on reflow and function in isolated rat hearts. Seiler KS; Kehrer JP; Starnes JW Am J Physiol; 1992 Apr; 262(4 Pt 2):H1029-35. PubMed ID: 1566886 [TBL] [Abstract][Full Text] [Related]
8. [Protective effect of endogenous catecholamine depletion against hypoxic and reoxygenation damage in isolated rat heart: an ultrastructural study (author's transl)]. Feuvray D; James F; de Leiris J J Physiol (Paris); 1980; 76(7):717-22. PubMed ID: 7218160 [TBL] [Abstract][Full Text] [Related]
9. Antagonists of calmodulin delay injury development in the severely ischemic perfused working rat heart. Beresewicz A Acta Physiol Pol; 1988; 39(4):225-43. PubMed ID: 3075408 [TBL] [Abstract][Full Text] [Related]
10. Protective effect of gap junction uncouplers given during hypoxia against reoxygenation injury in isolated rat hearts. Rodríguez-Sinovas A; García-Dorado D; Ruiz-Meana M; Soler-Soler J Am J Physiol Heart Circ Physiol; 2006 Feb; 290(2):H648-56. PubMed ID: 16183732 [TBL] [Abstract][Full Text] [Related]
11. Oxidative changes in hypoxic-reoxygenated rabbit heart: a consequence of hypoxia rather than reoxygenation. Park Y; Kehrer JP Free Radic Res Commun; 1991; 14(3):179-85. PubMed ID: 2060863 [TBL] [Abstract][Full Text] [Related]
12. Beneficial effects of yohimbine on posthypoxic recovery of cardiac function and myocardial metabolism in isolated perfused rabbit hearts. Takeo S; Hayashi M; Tanonaka K; Yamamoto K J Pharmacol Exp Ther; 1991 Jul; 258(1):94-102. PubMed ID: 1677045 [TBL] [Abstract][Full Text] [Related]
13. Prevention of the oxygen paradox in hypoxic-reoxygenated hearts. Schlüter KD; Schwartz P; Siegmund B; Piper HM Am J Physiol; 1991 Aug; 261(2 Pt 2):H416-23. PubMed ID: 1877668 [TBL] [Abstract][Full Text] [Related]
14. Changes in cyclic nucleotide levels and contractile force in the isolated hypoxic rat heart during perfusion with glucagon. Busuttil RW; Paddock RJ; Fisher JW; George WJ Circ Res; 1976 Mar; 38(3):162-7. PubMed ID: 174833 [TBL] [Abstract][Full Text] [Related]
15. The role of Na+-H+ exchange occurring during hypoxia in the genesis of reoxygenation-induced myocardial oedema. Inserte J; Garcia-Dorado D; Ruiz-Meana M; Solares J; Soler J J Mol Cell Cardiol; 1997 Apr; 29(4):1167-75. PubMed ID: 9160868 [TBL] [Abstract][Full Text] [Related]
16. Possible mechanism by which coenzyme Q10 improves reoxygenation-induced recovery of cardiac contractile force after hypoxia. Takeo S; Tanonaka K; Tazuma Y; Miyake K; Murai R J Pharmacol Exp Ther; 1987 Dec; 243(3):1131-8. PubMed ID: 3694529 [TBL] [Abstract][Full Text] [Related]
17. Possible mechanisms for reoxygenation-induced recovery of myocardial high-energy phosphates after hypoxia. Takeo S; Sakanashi M J Mol Cell Cardiol; 1983 Sep; 15(9):577-94. PubMed ID: 6631971 [TBL] [Abstract][Full Text] [Related]
18. Correlation between antioxidant changes during hypoxia and recovery on reoxygenation. Dhaliwal H; Kirshenbaum LA; Randhawa AK; Singal PK Am J Physiol; 1991 Sep; 261(3 Pt 2):H632-8. PubMed ID: 1887913 [TBL] [Abstract][Full Text] [Related]
19. Oxygen consumption and tissue Ca2+ uptake during reoxygenation after hypoxia in the rabbit. Nakanishi T; Uemura S; Jarmakani JM Can J Cardiol; 1985 Mar; 1(2):148-54. PubMed ID: 3850769 [TBL] [Abstract][Full Text] [Related]
20. Oxygen-induced enzyme release after irreversible myocardial injury. Effects of cyanide in perfused rat hearts. Ganote CE; Worstell J; Kaltenbach JP Am J Pathol; 1976 Aug; 84(2):327-50. PubMed ID: 941982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]