These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37534567)

  • 1. Doping Engineering of Conductive Polymers and Their Application in Physical Sensors for Healthcare Monitoring.
    Guo X; Sun Y; Sun X; Li J; Wu J; Shi Y; Pan L
    Macromol Rapid Commun; 2024 Jan; 45(1):e2300246. PubMed ID: 37534567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Approach to Conjugated Polymers with Biomimetic Properties.
    Baek P; Voorhaar L; Barker D; Travas-Sejdic J
    Acc Chem Res; 2018 Jul; 51(7):1581-1589. PubMed ID: 29897228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies.
    Ma Z; Shi W; Yan K; Pan L; Yu G
    Chem Sci; 2019 Jul; 10(25):6232-6244. PubMed ID: 31367298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Developments and Implementations of Conductive Polymer-Based Flexible Devices in Sensing Applications.
    Tran VV; Lee S; Lee D; Le TH
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms for Imparting Conductivity to Nonconductive Polymeric Biomaterials.
    Patton AJ; Poole-Warren LA; Green RA
    Macromol Biosci; 2016 Aug; 16(8):1103-21. PubMed ID: 27188690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress in Bionic Skin Based on Conductive Polymer Gels.
    Li H; Gao G; Xu Z; Tang D; Chen T
    Macromol Rapid Commun; 2021 Nov; 42(22):e2100480. PubMed ID: 34505726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors.
    Li G; Li C; Li G; Yu D; Song Z; Wang H; Liu X; Liu H; Liu W
    Small; 2022 Feb; 18(5):e2101518. PubMed ID: 34658130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology tailoring of nano/micro-structured conductive polymers, composites and their applications in chemical sensors.
    Ma X; Gao M; He X; Li G
    Recent Pat Nanotechnol; 2010 Nov; 4(3):150-63. PubMed ID: 20615192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing the improved sensitivity of PEDOT:PSS/PVA thin films through secondary doping and their strain sensors application.
    Ahmad Ruzaidi DA; Maurya MR; Yempally S; Abdul Gafoor S; Geetha M; Che Roslan N; Cabibihan JJ; Kumar Sadasivuni K; Mahat MM
    RSC Adv; 2023 Mar; 13(12):8202-8219. PubMed ID: 36922951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of glycosaminoglycan-modified electrically conductive polymers for biomedical applications.
    Schöbel L; Boccaccini AR
    Acta Biomater; 2023 Oct; 169():45-65. PubMed ID: 37532132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain Sensing Behavior of 3D Printable and Wearable Conductive Polymer Composites Filled with Silane-Modified MWCNTs.
    Wu Z; Jin Y; Li G; Zhang M; Du J
    Macromol Rapid Commun; 2022 Feb; 43(4):e2100663. PubMed ID: 34822206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications.
    Zhao F; Shi Y; Pan L; Yu G
    Acc Chem Res; 2017 Jul; 50(7):1734-1743. PubMed ID: 28649845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose-Based Conductive Materials for Energy and Sensing Applications.
    Wang DC; Lei SN; Zhong S; Xiao X; Guo QH
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors.
    Han Y; Sun L; Wen C; Wang Z; Dai J; Shi L
    Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35147523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsically Conductive Polymer Nanocomposites for Cellular Applications.
    Lalegül-Ülker Ö; Elçin AE; Elçin YM
    Adv Exp Med Biol; 2018; 1078():135-153. PubMed ID: 30357622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional Conductive Biomaterials as Promising Platforms for Cardiac Tissue Engineering.
    Mousavi A; Vahdat S; Baheiraei N; Razavi M; Norahan MH; Baharvand H
    ACS Biomater Sci Eng; 2021 Jan; 7(1):55-82. PubMed ID: 33320525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors.
    Kanoun O; Bouhamed A; Ramalingame R; Bautista-Quijano JR; Rajendran D; Al-Hamry A
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive polymers: towards a smart biomaterial for tissue engineering.
    Balint R; Cassidy NJ; Cartmell SH
    Acta Biomater; 2014 Jun; 10(6):2341-53. PubMed ID: 24556448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insights to Design Electrospun Fibers with Tunable Electrical Conductive-Semiconductive Properties.
    Serrano-Garcia W; Bonadies I; Thomas SW; Guarino V
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Healable, Degradable, and Conductive MXene Nanocomposite Hydrogel for Multifunctional Epidermal Sensors.
    Li X; He L; Li Y; Chao M; Li M; Wan P; Zhang L
    ACS Nano; 2021 Apr; 15(4):7765-7773. PubMed ID: 33769046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.